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Abstract

We describe a method for frequency locking a laser and a cavity. Orthogonal modes from the laser are incident on a

cavity such that only one mode is resonant at the desired frequency. The polarisation or spatial phase distribution of the

light reflected from the cavity is analysed, yielding the phase between the modes – this is the locking signal. We compare

this method with other locking techniques, and show this to be a natural progression from these. Simulations are

presented for applications of interest, e.g., gravity wave interferometry (an empty cavity) and optical frequency con-

version (a polarisation dependent cavity).

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

A range of techniques have been established to

lock a laser source to an optical cavity [1], or some

other external reference (e.g., atomic or molecular
transition). An overview of many of these tech-

niques is provided in [2]. Such locking schemes are

broadly divided into those which monitor varia-

tions in either the transmitted or reflected intensity

of some probe beam, and those based on inter-

ferometry.

In intensity based schemes, light from the

source to be locked is incident on a reference and
then passes to a detector. The detected intensity

then depends on the detuning of the source. By

monitoring the intensity of the light after inter-

acting with the reference, and knowing the de-

pendence on detuning, an error signal is obtained.

Intensity locking schemes include: locking to the
transmission peak of a cavity, locking to the side

of a transmission fringe [3], dithering the source

frequency about a transmission peak [4] and sat-

uration spectroscopy [5]. Common to all intensity

locking schemes is that only the intensity of the

output signal matters, and if it is recombined with

part of the original signal, this is done incoherently

(e.g., by differencing the signals from two photo-
detectors, before and after the cavity).

The other category of locking schemes is inter-

ferometric in nature, by this we mean that two (or

more) modes of a probe light field are combined

coherently (the prerequisite for interference) to

generate the error signal. These modes may be

orthogonal spatial modes (e.g., tilt-locking [6]) or
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polarisation modes (e.g., H€aansch–Couillaud lock-
ing [7]), or even different frequency components

(e.g., Pound–Drever–Hall locking [8,9]).

Here we present a locking scheme which uses

the phase difference between orthogonal modes,

either spatial or polarisation, as the target error
signal. In both cases we use polarisation assisted

phase retrieval to obtain our error signal.

2. Polarisation assisted phase retrieval

While it is often sufficient to consider light as

only a scalar field (as in, for example, fringe side
locking), light is more fully described as a vector

field. As such, approximating the propagation of

light as a plane wave, with the electric field oscil-

lating transverse to the direction of propagation,

the electric field at any point may be described as

the sum of two independent components which are

orthogonally polarised. The choice of the orthog-

onal basis for this description of the field is arbi-
trary, but it is simpler to realise this technique

experimentally if a linear polarisation basis is

chosen. Following convention, we label the two

orthogonal linear polarisations as ‘‘horizontal’’

(H) and ‘‘vertical’’ (V). Polarisation assisted phase

retrieval allows us then to determine the phase

difference between these components.

Consider some plane polarised light, where the
electric field of the beam is in an unknown super-

position of horizontal and vertical polarisation

components, i.e.,

E ¼ EH
EV

� �
¼ AH

AVei/

� �
eiðxt�kzÞ; ð1Þ

where AH and AV are the amplitudes of the two
field components, x is the angular frequency of the
light, t is the time, k ¼ 2p=k is the wavenumber of
the light, z is distance in the direction of propa-
gation and / is the phase difference between the
two polarisations.

The Stokes parameters for the total field are

well known [10]. Expanding these, using the defi-

nitions of EH and EV in Eq. (1), and applying
Euler�s formula, we find:

S0 ¼ A2H þ A2V; ð2aÞ

S1 ¼ A2H � A2V; ð2bÞ
S2 ¼ 2ðAHAV cos/Þ; ð2cÞ
S3 ¼ 2ðAHAV sin/Þ: ð2dÞ
The Stokes parameters may be obtained by mea-

surement of the intensity of the horizontal, diag-

onal and right-circular components, i.e.,

Si ¼ 2Ii � I0 ði ¼ 0; 1; 2; 3Þ; ð3Þ

where Ii are the measured intensities, I0 is the total
light intensity and i ¼ 1; 2; 3 refer to the horizon-
tal, diagonal and right-circular components, re-

spectively.

The expressions for S2 and S3 in Eqs. (2a)–(2d)
combine to yield the phase difference between EH
and EV. (This analysis method was presented by
Freund [11] in the context of locating and analy-

sing optical vortices.) Viz,

tan/ ¼ S3
S2

; ð4Þ

or, equivalently (after [11]),

S2 þ iS3 ¼ 2AHAVei/: ð5Þ
The phase difference between EH and EV, /, may
be extracted from either of the above expressions.

Experimentally, obtaining / from Eq. (4) would
almost certainly require the use of fast digital

processing to calculate the arctangent function.

However, this would pose no particular difficulty
as this is a routine process in real time control

systems where precision to better than 20 signifi-

cant digits is possible [12]. If a higher frequency

response is required, Eq. (5) may prove amenable

to an analogue sideband technique, allowing / to
be measured without having to directly calculate

the arctangent. If a linear phase response is not

required, (e.g., in frequency locking) then the sig-
nal provided by S3=S2 will indicate if there is a
phase difference between the components and the

direction of this phase shift, and this may be

readily implemented in analogue electronics.

The relative intensities of the H and V polarised

components have no effect on the value of the re-

covered phase, providing both are detectable. If one

of the linearly polarised components is greater than
the other, it contributes equally to both S2 and S3
and so, inspecting Eqs. (4) and (5), we see that there
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is no net effect on/. The limiting factors in choosing
the intensities of the H and V components are the

efficiency of the detectors and detector noise.

3. Frequency locking by analysis of orthogonal
polarisation modes

Consider some light field, Ei, which may be
decomposed into two orthogonal components,

incident on a particular cavity. Further, these

components are orthogonally linearly polarised

and have a fixed phase relationship

Ei ¼ Ei1x̂x1 þ Ei2x̂x2: ð6Þ
Here Ei1 and Ei2 are complex amplitudes of the
field components, and x̂x1 and x̂x2 are the basis vec-
tors of the orthogonal modes. Choose x̂x1 to be
horizontally polarised and x̂x2 to be vertically po-
larised. Note that the basis vectors, x̂x1 and x̂x2, are
not necessarily directions in real space, e.g., they

may be orthogonal spatial modes. The cavity is

chosen such that the x̂x1 and x̂x2 field components are
resonant at different frequencies. We choose the x̂x1
component to be resonant at the frequency we

want to lock to, so the x̂x2 component will be almost
completely reflected. The reflected field from this

cavity is defined to be

Er ¼ Er1x̂x1 þ Er2x̂x2 ¼ Ei1Fr1x̂x1 þ Ei2Fr2x̂x2; ð7Þ
where Fr1 and Fr2 are the cavity reflectances for the
x̂x1 and x̂x2 components, respectively. As the fre-
quency of the input beam is changed and passes

through the resonance for x̂x1, this component of the
reflected field will experience a phase shift relative
to the x̂x2 component. As the x̂x1 component is hor-
izontally polarised and the x̂x2 component is verti-
cally polarised we simply measure the S2 and S3
Stokes parameters of the reflected light. Applying

the polarisation assisted phase retrieval method

described above yields the relative phase between

the x̂x1 and x̂x2 components. This is our error signal.

4. Applications

We now demonstrate our technique by model-
ling several cavities of interest and comparing the

results with existing methods. The model reference

cavity is chosen, for simplicity, to be a symmetric,

confocal, two-mirror cavity and Hermite–Gauss

modes are used to approximate the spatial modes of

the cavity, as expected experimentally. Following

Siegman [13], the round trip gain for this cavity is

g ¼ r2e�2aL�ið2kL�wrtÞ; ð8Þ
where r is the reflectance of the cavity mirrors, a is
the absorption per unit length in the cavity, L is

the cavity length, k is the wavenumber of the light
in the cavity and wrt is the round trip Guoy phase
shift for the mode being analysed, given, for this

particular cavity, by

wrt ¼ ðmþ nþ 1Þ p
2
; ð9Þ

where m and n are the Hermite–Gauss mode
numbers. The wavenumber, k, is defined as

k ¼ 2pnc
k0

; ð10Þ

where nc is the effective refractive index for the
cavity and k0 is the free space wavelength of the
light.

Combining Eqs. (8)–(10), the round trip gain is

g ¼ r2 exp
�
� 2aL� i 4pncL

k0

�
þ ðmþ nþ 1Þ p

2

��
:

ð11Þ
Letting Ei be the electric field of the incident light,
the reflected field is

Er ¼ Ei r
�

� t2g
rð1� gÞ

�
: ð12Þ

Dividing Eq. (12) by the incident field Ei and
substituting for g yields the cavity reflectance

Fr¼ r

�
t2rexp �2aL� i 4pncLk0

þðmþnþ1Þp
2

� �n o

1� r2 exp �2aL� i 4pncLk0
þðmþnþ1Þp

2

� �n o :

ð13Þ

4.1. Polarisation dependent cavities

We now consider the application of our locking

method to two types of polarisation dependencies
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in the reference cavity, linear polarisation dichro-

ism and birefringence. In both cases we use the H–

V polarisation basis, as, without any loss of gen-

erality, we can choose to define the H direction to

be parallel to the non-absorbing axis in the case of

dichroism, and parallel to the fast axis for the bi-
refringent case. Fig. 1 shows schematically a pos-

sible experimental setup for analysing orthogonal

polarisation modes to obtain a locking signal for a

polarisation dependent cavity. The initial linear

polarisation of the laser source determines the

fraction of the incident light which goes into each

component. The input field is

Ei ¼ EHĤH þ EVV̂V ; ð14Þ
where ĤH and V̂V are the H and V polarisation basis
vectors. For each of the polarisation components
the cavity reflectance is calculated from Eq. (13),

by substituting the appropriate polarisation de-

pendant terms for each. Doing so yields

Er ¼ EHFr1ĤH þ EVFr2V̂V :

From this, the Stoke�s parameters are calculated
(Eqs. (2a)–(2d)), and either Eq. (4) or (5) yields the

error signal.

For a dichroic cavity, the reflectances are given

by

Fr1 ¼ Frða ¼ a0Þ ðH pol:Þ;
Fr2 ¼ Frða ¼ a0 þ adÞ ðV pol:Þ; ð15Þ

where a0 is the cavity loss per unit length experi-
enced by both components and ad is the loss per
unit length experienced only by the vertically po-

larised component due to the dichroism. Fig. 2

compares our method with H€aansch–Couillaud
locking, and shows the associated locking poten-

tials [2], calculated for a reference cavity which is
linearly dichroic. Our locking technique is shown

for both the case where the actual phase shift be-

tween the orthogonal components is recovered,

and for the case where the tangent of the phase

shift is recovered. In their original paper [7]

H€aansch and Couillaud examined the case of a
cavity containing a linear polarising element. We

followed their example by choosing the value of ad
to be effectively infinite. The plots in Fig. 2 show

that the error signal generated by the method we

describe is noteably steeper than that of H€aansch–
Couillaud locking near the resonance. In fact the

orthogonal modes error signal is the cavity dis-

persion; no steeper locking signal can be obtained

with linear means. This is also seen in the steeper

locking potentials for small detuning. The inset to
Fig. 2 shows the same error signals calculated for

several free spectral ranges. The error responses

generated by these two methods overlap far from

resonance. Thus, our method is more sensitive at

small detunings, and is comparable to H€aansch–
Couillaud locking at large detunings. For both

methods the effective locking width is one free

spectral range of the reference cavity.
For a birefringent cavity, the reflectances are

given by

Fr1 ¼ Frðnc ¼ nfastÞ ðH pol:Þ;
Fr2 ¼ Frðnc ¼ nslowÞ ðV pol:Þ; ð16Þ

where the effective cavity refractive indices for the

fast and slow axes of the birefringent element are
nfast and nslow, respectively. Fig. 3 shows a com-
parison of calculated locking error signals for

H€aansch–Couillaud locking and the method de-
scribed here, for the case of a cavity containing

some birefringent element. It is seen that, as with

Fig. 1. Schematic of one possible experimental setup to im-

plement orthogonal polarisation mode analysis for locking a

polarisation dependent cavity.
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the dichroic cavity, near resonance our method

produces a steeper error signal, making it more

sensitive to small detunings. Again, inset in this
figure are the same error signals calculated for

several free spectral ranges of the reference cavity,

showing that at large detuning the method of

analysing orthogonal modes has a locking signal

similar to H€aansch–Couillaud locking. As before,
the effective locking width for both methods is one

free spectral range of the reference cavity.

Typically, cavities in applications such as opti-
cal frequency conversion are birefringent. How-

ever, we note that ring cavities and those that

exhibit whispering gallery modes (WGM) are also

effectively birefringent due to the polarisation de-

pendent phase shifts on reflection. Standing wave

cavities, such as the example provided here, are

also often birefringent to some extent in practice,

due to stresses in the mirrors or other optical ele-

ments.

4.2. Orthogonal spatial modes

For an empty cavity (i.e., one with no polari-

sation dependence) the H and V polarised com-

ponents no longer suffice to produce the relative

phase shift required to yield an error signal from

the analysis of orthogonal polarisation modes.

However, the Guoy phase shift term in Eqs. (9)

and (13) means that two spatial modes can be
found which are resonant at different frequencies.

As before, without any loss of generality, we

model the particular case of a confocal cavity,

where all the even modes (i.e., the sum of the mode

numbers m and n is even) will fall at one frequency
and all the odd modes at another, half the cavity�s

Fig. 2. Error signals and locking potentials [2] for H€aansch–Couillaud locking and our method, applied to a cavity which exhibits linear

polarisation dichroism. The orthogonal mode error signal returned may be either the phase shift (/) imparted by the cavity, or the tan
of this angle, as appropriate for the application (see text). The inset shows detuning over several free spectral ranges of the cavity.
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free spectral range away. We choose the two

lowest order modes which fall at different fre-

quencies, namely: TEM00 and TEM01. We want to

lock the laser source to a frequency at which the

TEM00 mode is resonant with the cavity, and so

will experience a phase shift relative to the TEM01
component on reflection. The TEM01 spatial mode
has two lobes with a relative phase shift of half a

wavelength between them and these are quarter a

wavelength shifted in phase from the TEM00
component.

Recently, a locking scheme was proposed, tilt-

locking [6], which made use of just such a setup,

but only considering a scalar light field. If there

were no relative phase shift, the two lobes of the
TEM01 component experience the same interfer-

ence with the TEM00 and so have the same resul-

tant intensity. If there were a relative phase shift,

one lobe of the TEM01 would experience con-

structive interference, and the other destructive. So

one lobe would have a greater intensity than the

other, and which lobe had the greater, depends on

which side of the resonance the detuning occurs.
By measuring the intensity of the two lobes of the

reflected field on a split detector and differencing

them, an error signal is generated.

We now extend this to use the vector properties

of the light field. Fig. 4 shows schematically a

possible experimental setup for implementing our

technique, for an empty cavity using orthogonal

spatial modes, one of which (TEM01) may be
generated holographically [14]. The initial linear

Fig. 3. Error signals and locking potentials for H€aansch–Couillaud locking and our method for a cavity which is birefringent in linear

polarisation. The error signal generated by the analysis of orthogonal polarisation modes may be either the phase shift (/) imparted by
the cavity, or the tan of this angle, as appropriate for the application (as before). The inset shows detuning over several free spectral

ranges of the cavity. In each free spectral range there are two resonances, one from each of the orthogonal modes, for which the cavity

has different refractive indices.
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Fig. 4. Schematic of one possible experimental setup to implement orthogonal spatial mode analysis for locking an empty cavity.

Fig. 5. Error signals and locking potentials for tilt-locking and our method for an empty cavity. The error signal in the latter case is

exactly the phase shift (/) imparted by the cavity. The inset shows detuning over several free spectral ranges of the cavity. In each free
spectral range there are two resonances, one from each of the orthogonal modes (TEM00 and TEM01).
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polarisation of the laser source determines the

fraction of the incident light which goes into each

component. To allow us to extract the phase shift,

one spatial component (TEM00) is H polarised and

the other (TEM01) is V polarised. We can now

apply the polarisation assisted phase retrieval
method described earlier. The basis for this system

is then the product of the orthogonal spatial mode

basis and the H–V basis.

The expression for the input field in this case is

Ei ¼ EHx̂x1 þ EVx̂x2; ð17Þ
where, as before EH and EV are the complex field

amplitudes of the H and V components, but the

basis vectors x̂x1 and x̂x2 are two of the bases of the
product space of the spatial and polarisation

modes. The basis vector x̂x1 ¼ ĤH TEM00 is the
component of the field which is both TEM00 and H

polarised. Similarly, x̂x2 ¼ V̂V TEM01 is the compo-
nent which is both TEM01 and V polarised. The
other two components of the product space [15]

are zero. The cavity reflectances are given by

Fr1 ¼ Frðm ¼ 0; n ¼ 0Þ ðH pol:Þ;
Fr2 ¼ Frðm ¼ 0; n ¼ 1Þ ðV pol:Þ: ð18Þ

As with tilt-locking, the two modes experience a

relative phase shift due to the cavity, which de-
pends on detuning. However, unlike tilt-locking,

we measure the relative phase of each lobe via the

polarisation assisted phase retrieval method and

sum the two. Recall that at resonance the lobes of

the TEM01 component have a phase of �p/2 rela-
tive to the TEM00. Whereas, off resonance, the

TEM00 phase will shift towards that of one lobe or

the other of the TEM01, and will cause the summed
phases to be either positive or negative depending

on the direction of the detuning, as shown in Fig. 5.

In this figure, the error signal from our method

is much steeper near the cavity resonance than tilt-

locking and so is expected to be more sensitive to

detuning. This is an advantage in applications

using empty cavities, e.g., gravity wave interfer-

ometry, where sensitivity is paramount. Once

again, the inset to this figure shows the error sig-

nals for both methods calculated for several free
spectral ranges of the cavity. The effective locking

width for both methods is one free spectral range.

5. Conclusion

We described a novel method for locking a laser

source to a resonance, such as a cavity. We have
shown numerical results comparing this method to

other locking methods, and found it provides a

significantly steeper locking signal. Table 1 lists

example cases where it can be used, and a suitable

choice of orthogonal components for each exam-

ple case. Generally, this locking technique may be

applied to any case where a cavity or other reso-

nance will partially affect each of two incident
components, imparting a relative phase shift. This

phase shift must be related to the resonance con-

dition of one component. The polarisation assisted

phase retrieval technique described in this work

can then be applied to extract the phase shift and

this is the error signal used to lock the system.

In the examples presented here, our method

makes use of two orthogonal modes, which are
orthogonally polarised and resonant at different

frequencies. For some cases (e.g., birefringent or

dichroic) these requirements are degenerate and

the orthogonal polarisations are also the orthog-

onal modes. This degeneracy is exploited by

H€aansch–Couillaud locking. In other cases the
resonant response is independent of polarisation

and a pair of spatial modes are used to obtain a
relative phase shift, as in tilt-locking. Thus, a

Table 1

Examples of orthogonal modes for frequency locking a range of cavity types

Type of cavity Orthogonal modes

Empty cavity TEM00 TEM01 or TEM10, etc.

Polarisation dependent (e.g., birefringent element) Horizontal polarised Vertical polarised

Whispering gallery modes (e.g., microsphere) TE TM

Physical obstruction (e.g., transverse wire) TEM01 TEM10
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family of locking techniques exist which depend on

this phase shift between two effectively orthogonal

modes. Members of this family range from tilt-

locking where only the intensity is used, to

H€aansch–Couillaud locking where the intensity and
part of the polarisation information is used, to the
method described in this paper where intensity and

all the polarisation information is used. This

method alone returns the actual dispersion curve

of the resonance, and this is why it generates the

steepest locking signal.

This method can be readily extended to more

exotic dependencies such as, for example, orbital

angular momentum, and phase discontinuities or
singularities. In these cases, the relative phase

measurements could be undertaken using proper-

ties of the light field other than polarisation. The

potential for extending the technique we have

presented here, to allow phase shift measurements

by means other than polarisation analysis bears

further investigation.
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