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Abstract

We present and demonstrate an all-optical, non-deterministic CSIGN-gate for quantum
computation. The CSIGN-gate is capable of entangling previously unentangled qubits and
therefore represents an elementary operation relevant for universal quantum computing.
It can also be employed for the generation of novel multi-particle entangled states, among
them the so-called cluster states. The operation of the quantum gate is completely charac-
terized by performing quantum state and process tomography. Reconstructing the process
matrix of the CSIGN-gate, we find an average gate fidelity of Favg = 0.84 ± 0.1. The real-
ized optical CSIGN-circuit is based on the two-photon scheme of References [14, 15], and
since it requires only a single optical mode-matching condition, its construction is drasti-
cally facilitated compared to previous schemes. This circuit indeed presents the simplest
entangling optical gate realized to date. This thesis is written in a fully self-contained
manner, introducing and establishing the required theoretical background and giving a
full description of the experimental setup and procedure as well as a thorough discussion
of the results and occurring problems. We propose the extension of the above scheme to
generate a genuine 3-photon cluster state, which is equivalent to a Greenberger-Horne-
Zeilinger-state (GHZ-state) [16], and give a short outlook on future experiments. In ad-
ditional experiments the effects of temporal mode-mismatch has been studied. This was
achieved with an adapted quantum teleportation experiment, showing that the fidelity of
such a quantum communication protocol declines in a Gaussian fashion as a function of
the temporal mode-mismatch. A simple theoretical model is developed that explains this
behaviour, consistent with the experimental data.
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Preface

Whenever we talk about Quantum Computation or, in a more general form, of Quantum
Information, we are speaking of information processing tasks that can (only) be accom-
plished using quantum mechanical systems [1, 2].
Much of the effort in quantum information is directed toward the experimental realization
of a quantum computer. It has been shown that a quantum computer can perform certain
tasks, like factoring large numbers and searching databases, much more efficiently than a
regular “classical” computer [4, 5].

It is very interesting and well worth noting, that a quantum system of 500
qubits already requires 2 500 amplitudes to fully describe its quantum state. This
number is larger than the estimated number of atoms in the universe and this
enormous potential computational power is well worth harvesting!

M.A. Nielsen and I.L. Chuang

Quantum information certainly offers plenty of challenges to physicists and there exist
many different experimental approaches. Photons are very good contenders for qubits to
realize such quantum computing systems, as they can be produced and manipulated very
easily and have low decoherence, since they tend not to interact with the environment.
However, photons also have a very small interaction cross-section and since photon-photon
interaction is required for two- or multiple-qubit gates, they have long been thought to
be inappropriate for quantum computation. But in 2001, Knill, LaFlamme and Milburn
(KLM) introduced a scheme [6] for optical quantum computation which depends on
measurement-induced non-linearities. The KLM scheme is suitable and, furthermore,
scalable for efficient quantum computation. In the subsequent years, the scheme has been
improved and simplified [7, 8] and in the last few years a number of two-qubit gates have
been demonstrated experimentally [9, 10, 11].
A very elegant and beautifully alternate model to the KLM scheme was suggested by
Raussendorf and Briegel [12] in 2001, which is a “measurement based” computation
scheme that is independent of any specific physical realization. It is based on so-called
cluster states, which are highly entangled networks of qubits, and the computation is
performed by a sequence of single qubit measurements, where the order and choices
of measurements determine the algorithm that is computed. The outcomes of the
single measurements can be classically fedforward, resulting in deterministic quantum
computation, in contrast to the probabilistic KLM scheme. All in all, cluster states are
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Preface

very promising for future implementations of quantum computers and the creation of
such a cluster state is also the main goal of the experiment which is investigated in
this thesis. To effectively create such an cluster state, one has to entangle individual
qubits by applying CSIGN-gates between them. A CSIGN-gate introduces a controlled
phase shift between individual qubits, such that |i〉|j〉 → (−1)ij|i〉|j〉, with (i, j ∈ {0, 1}).
This two-qubit gate together with single-qubit rotations, is universal for quantum
computation, i.e. any arbitrary unitary operation can be performed by these gates alone.
It is therefore of utmost importance in the current research field of quantum computation
to realize such gates and to use them for the creation of cluster states. Although cluster
states have been demonstrated experimentally before [13], this, if successful, would be the
first generation of a genuine cluster state of previously unentangled photons. The scheme
which we tried to realize was first suggested independently by T.C. Ralph et al. [14] as
well as by Hofmann and Takeuchi [15], and can in principle be easily extended to create a
N-photon cluster state. Even though the experiment to create these cluster states is still
under way, the basic component for the generation of the cluster state, the CSIGN-gate,
has been realized and characterized using quantum state and process tomography. This
thesis mainly focuses on this recent results but at the same time gives an outlook and
proper explanation of the generation of a 3-photon cluster state, which is equivalent to a
GHZ-state [16].

Since it turns out that mode-mismatch is the prime delimiter to the performance
of the gate, further investigation with respect to temporal mode-mismatch has been
undertaken. Employing a quantum teleportation configuration [52], we study the effects
of temporal mode mismatch on the fidelity of the teleportation process and give a proper
explanation in form of a simple theoretical model. The achievement of perfect mode-
matching presents a major challenge in almost every “real world” application of quantum
communication (QC) schemes, such as quantum dense coding [50], quantum telepor-
tation [45], and a quantum repeater [47, 46, 49], which is at the heart of long distance QC.

The experimental work presented in this diploma thesis was performed at two uni-
versities: In the Quantum Optics Group of Prof. Dr. Anton Zeilinger at the University of
Vienna, Austria, (Chapters 8 to 10) and at the University of Queensland, Australia, in
the Quantum Technology Laboratory of Prof. Dr. Andrew White (Chapters 3 to 7).

This thesis is structured as follows: I will first of all briefly examine some key
ideas underlying quantum computation and quantum information in Chapter 1, before
theory concerning the experiment is discussed in more detail in Chapter 2. A (technical)
description of the setup and of the experimental procedure follows (Chapters 3 and 4)
before I present and discuss the results in Chapter 5. Occurring problems and possible
solutions are outlined in Chapter 6. A short outlook for future experiments is given
and their realization briefly discussed (Chapter 7) before further investigation on
mode-mismatch effects is presented in Chapter 8. This experiment employs quantum
teleportation and after a short theoretical introduction into quantum teleportation, I will
proceed to the description of the setup (Chapter 9) and present and discuss the results
in the concluding Chapter 10.
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1. Introduction

The fundamental concept of a classical computer is the bit. Quantum information and
especially quantum computation rely on a similar concept, the quantum bit, or qubit. In
this section I will give a short introduction in the properties of qubits, their representation
on the so-called Bloch- or Poincaré-Sphere and explain the - according to Schrödinger [3]
- most interesting and puzzling property in quantum information, entanglement.

1.1. Quantum Mechanics

1.1.1. The Qubit

Just as a classical bit has a state, either 0 or 1, a qubit also has a state, which can be
thought of as a vector in a two-dimensional Hilbert-space and will be denoted as |0〉 and
|1〉 from now on. The main and important difference between bits and qubits is that the
latter can also be in a linear combination of states, i.e. a coherent superposition:

|Ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex numbers (often called amplitudes). The states |0〉 and |1〉 are
also known as computational basis states and form an orthonormal basis for this vector
space. In contrast to a classical bit the qubit can exist in a continuum of states between
|0〉 and |1〉, until we observe, i.e. measure it. Whenever we measure a qubit we get a
probabilistic result, either ‘0’ or ‘1’, with probability |α|2 and |β|2, respectively. Since the

Figure 1.1.: The difference between classical bits and qubits. The classical bit is always in a
defined state while qubits can also exist in a superposition of states.
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1. Introduction
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Figure 1.2.: Poincaré-Sphere representation of a single qubit. |R〉 and |L〉 lie on the poles of
the sphere while |H〉, |V 〉 and |+〉 and |−〉 are located on the equatorial plane, all those basis
states being separated by π

2 . θ represents an angle on the equatorial plane while ϕ is measured
off the equator as indicated.

probabilities must sum up to one, i.e. 〈Ψ|Ψ〉 = 1, a natural condition implies |α|2+|β|2 = 1
(normalization condition).
Qubits can be realized experimentally in many different physical quantum systems, e.g.
as the alignment of the nuclear spin in a uniform magnetic field or as two different en-
ergy levels of a single atom or ion (‘ground’ and ‘excited’ state). In our experiment we
realize the qubit as two different polarizations of a single photon (e.g. horizontal and ver-
tical polarization, |H〉| and |V 〉 for |0〉 and |1〉, respectively), since photons can easily be
controlled and their states manipulated with rather simple linear optical devices.

1.1.2. Poincaré-Sphere

One very useful picture when thinking about qubits is the geometrical representation of
polarization states on the so-called Poincar é-Sphere. Since |α|2 + |β|2 = 1, one can rewrite
the state in Eq. 1.1 as

|Ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉, (1.2)

where the angles θ and ϕ define a point on the three-dimensional unit sphere shown
in Fig. 1.2. R (L) denotes right (left) circular polarized light R(L) = 1√

2
(|H〉 ± i|V 〉),

while diagonal polarized light |D〉 (|A〉) is the coherent superposition of |H〉 and |V 〉,
D(A) = 1√

2
(|H〉 ± |V 〉) and also lies on the equatorial plane of the sphere. |D〉 and |A〉

are also often denoted as |+〉 and |−〉. Pure states lie on the surface of the sphere while
mixed states are found inside the sphere. As we will see later on, many operations on
single qubits can be neatly described within this picture.

4



1.1. Quantum Mechanics

1.1.3. Measurements

Measurements play a significant role in quantum mechanics and especially in quantum
computation. It is usually described as an interaction of the quantum system with a
(classical) measurement apparatus, and is also referred to as projective measurement.
Such a projective measurement is characterized by an observable, M , which is a Hermitian
operator in Hilbert space, and has a spectral decomposition,

M =
∑
m

mPm, (1.3)

where Pm is the projector onto the eigenspace of M with eigenvalue m. The only possible
results of the measurement are the eigenvalues m of the observable. The probability of
obtaining result m upon measuring the state |Ψ〉 is given by

p(m) = 〈Ψ|Pm|Ψ〉, (1.4)

and the state of the quantum system is projected onto the final state

|Ψ〉f =
Pm|Ψ〉√

p(m)
. (1.5)

Suppose we want to measure a qubit as given in Eq. 1.1 in the computational basis. If we
measure a single qubit, then there are two possible outcomes, defined by two measurement
operators, M0 = |0〉〈0| and M1 = |1〉〈1|. Then, according to Eq. 1.4, the probability of
obtaining measurement outcome 0 is given by

p(0) = 〈Ψ|M0|Ψ〉 = |α|2, (1.6)

i.e., the absolute amplitude squared. Similarly, the probability for outcome 1 is p(1) = |β|2.

Another important mathematical tool associated with quantum measurements is
the POVM formalism, which is very well adapted to the analysis of measurements. It
basically states that one needs a sufficient (complete) set of operators Pm to determine
all the different possibilities of measurement outcomes1.

1.1.4. Multiple-Qubits and Entanglement

For two classical bits there are four possible states, 00, 01, 10 and 11, but a pair of qubits
can also exist in a superposition of this states, therefore spanning a 4-dimensional Hilbert
space. One important class of two-qubit states is the so-called EPR pair or Bell-state,

|Φ+〉 =
1√
2
(|00〉+ |11〉) (1.7)

Entangled states play a crucial role in quantum computation and quantum information
and are therefore of utmost importance. One remarkable feature of such states is that they

1The interested reader is referred to [2] for a complete introduction into the POVM formalism.
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1. Introduction

cannot be built as single and separable qubit states |a〉 and |b〉 such that |Φ〉 = |a〉|b〉.
Thus, they cannot be written as a product of states of their component systems, which is
a very crucial property of entangled states. When measuring the first qubit, one obtains
the result 0 (1) with probability 1/2 each, leaving the state |00〉 (|11〉). In either case, the
measurement of the second qubit will yield the same result as the measurement of the
first qubit. In other words, the measurement outcomes are correlated. Einstein, Podolsky
and Rosen first pointed out these strange properties of such states [20] and they have
been named Bell -States in honour of John Bell, who showed that correlations in such
entangled states are stronger than could possibly exist between classical systems [21]. For
a two-qubit system there are four distinct entangled states, the Bell-States,

|Φ±〉 =
1√
2
(|00〉 ± |11〉)

|Ψ±〉 =
1√
2
(|01〉 ± |10〉), (1.8)

which form an orthonormal basis for the two-qubit state space, and can therefore be
distinguished by appropriate quantum measurements.

But let us for now return to our quantum states, the most important resource in
quantum computation, and try to quantify this term more precisely.

Purity

Before we can decide whether a quantum state is pure or mixed, we have to accustom
ourselves with the density operator or density matrix formalism, a convenient way for
describing quantum systems whose state is not completely known.
Suppose we have a quantum system that is in a superposition of states |Ψ〉i with respective
probabilities pi. Then the density operator for this system is defined by

ρ ≡
∑

i

pi|Ψ〉i i〈Ψ|. (1.9)

It is worth noting that a density operator ρ is always a non-negative operator and always
has trace equal to one.

A quantum system whose state |Ψ〉 is exactly known is said to be in a pure state,
in which case the density operator is simply ρ = |Ψ〉〈Ψ|. Otherwise it is in a mixed state.
A simple criterion for determining whether a state is mixed or pure is to look at the trace
of the corresponding density operator. A pure state satisfies

tr(ρ2) = 1 (1.10)

while for a mixed state tr(ρ2) < 1.

6



1.1. Quantum Mechanics

Fidelity

The fidelity is a useful measure of distance between two quantum states, i.e. in which
degree two states overlap and are therefore the same. The fidelity between a pure state
|Ψ〉〈Ψ| and an arbitrary state ρ can be written as

F = 〈Ψ|ρ|Ψ〉, (1.11)

and is therefore equal to the overlap between |Ψ〉〈Ψ| and ρ. Another definition for the
fidelity between two density matrices can be found in Section 5.4.

Tangle

The tangle [17] is a measure for the “amount” of entanglement between two entangled
states and is straightforwardly only defined for a pair of qubits.
If ρAB is the density operator of two qubits A and B, then the tangle τAB of the density
matrix ρAB is defined as

τAB = [max{λ1 − λ2 − λ3 − λ4, 0}]2 , (1.12)

where λ1−4 are, in decreasing order, the square roots of the eigenvalues of the product
ρAB ρ̃AB.2 A tangle of τ=0 corresponds to an unentangled state, while τ=1 corresponds
to a maximally entangled state, and the entanglement of formation3 is a monotonically
increasing function of τ . For the special case in which the state of AB is pure, the matrix
ρAB ρ̃AB has only one non-zero eigenvalue, and one can show that τAB = 4 det ρA, where
ρA is the reduced density matrix of qubit A, i.e., the trace of ρAB over qubit B.
Another often used term when speaking about the degree of entanglement is the “concur-
rence”, which is simply the square root of the tangle [18].

Entropy

In quantum mechanics, the entropy is a fundamental measure of information and therefore
a key concept in quantum information theory. It is a measure for the uncertainty of a
quantum state, i.e. its density operators. Von Neumann defined the entropy of a quantum
state ρ by

S(ρ) ≡ −tr(ρ log ρ), (1.13)

where the logarithm is taken to the base two. If λx are eigenvalues of ρ then this definition
can be rewritten as

S(ρ) = −
∑

x

λx log λx. (1.14)

2ρ̃AB is defined by ρ̃AB = (σy ⊗ σy)ρ∗AB(σy ⊗ σy), where the asterisk denotes complex conjugation and

σy =
(

0 −i
i 0

)
is one of the Pauli matrices (Section 1.2.1).

3The entanglement of formation is given by E = h( 1
2 + 1

2

√
1− τ), where h is the binary entropy function

h(x) = −x log x− (1− x) log(1− x).

7



1. Introduction

The entropy is always non-negative and is zero if and only if the state is pure and is at
most log d in a d-dimensional Hilbert space if the the system is completely mixed. If a
composite system AB is in a pure state then S(A) = S(B). In this case the entropy of the
entanglement ranges from 0 for completely separable states to 1 for maximally entangled
states, although this definition should be taken with care.
If a measurement is performed on the system, then the state after the measurement can
be written as

ρ′ =
∑

i

PiρPi (1.15)

and the entropy is never decreased by this procedure and remains constant only if the
state is not changed by the measurement. Since most measurements are projective, i.e.
they effectively change the state of the system, in general S(ρ′) ≥ S(ρ).

The “linear entropy” is simpler to calculate and is related to the von Neumann
entropy. The linear entropy for a two-qubit system (4-dim. density operator) is defined
by

S(ρ) =
4

3

(
1− tr(ρ2)

)
. (1.16)

For a pure state S = 0 while for a maximally mixed state S = 1.

1.2. Linear Optics Gates

In order to perform quantum computation, we need the ability to fully control and ma-
nipulate single- and multiple-qubits, i.e. rotate them around specific axes, put them in
superposition and effectively entangle two qubits. Fortunately, there exist a number of
linear optical elements acting like computational “gates” and capable of performing these
operations, as we will see in this section.

1.2.1. Single-Qubit Gates

Quantum gates acting on single qubits can be be described by 2x2 matrices, with the con-
straint that the gate or matrix be unitary, therefore satisfying the normalization condition
before and after the gate (i.e. particle conservation).

Hadamard Gate

The Hadamard -gate (denoted H) is one of the most useful single-qubit gates, since it
turns |0〉 into (|0〉+ |1〉)/√2 and |1〉 into (|0〉− |1〉)/√2, therefore creating superposition.

H ≡ 1√
2

(
1 1
1 −1

)
(1.17)

This gate is sometimes described to act like a “square-root of NOT” gate, because it
performs “half” of the NOT operation, i.e it takes |0〉 to (|0〉+ |1〉)/√2, which is “halfway”

8



1.2. Linear Optics Gates
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Figure 1.3.: Visualization of the Hadamard gate on the Poincaré-Sphere, acting on the input
state (|0〉+ |1〉)/√2.

in between |0〉 and |1〉. However, this description is misleading, since simple algebra shows
that H2 = I, thus applying H twice to a state is just the identity operation. When
visualizing the Hadamard operation on the Poincaré-sphere, it turns out that it is just a
rotation of the sphere about the ŷ-axis by 90◦, followed by a rotation about the x̂-axis by
180◦, as illustrated in Fig. 1.3.

X-,Y-,Z-Gates

Another important set of gates are the X-,Y -,Z-gates, corresponding to the Pauli matrices

X ≡
(

0 1
1 0

)
; Y ≡

(
0 −i
i 0

)
; Z ≡

(
1 0
0 −1

)
. (1.18)

The X-gate, for example, acts like a quantum NOT-gate, performing a bit flip on the input
state α|0〉 + β|1〉 → α|1〉 + β|0〉, so that the roles of |0〉 and |1〉 are interchanged. The
Z-gate, on the other hand, performs a sign flip, since it does nothing to |0〉, but flips the
sign of |1〉 to give −|1〉, therefore α|0〉 + β|1〉 → α|0〉 − β|1〉. And last but not least, a
Hadamard-gate can be constructed out of X- and Z-gates, such that H = (X + Z)/

√
2.

Pauli matrices, when exponentiated, give rise to rotation operators about the x̂-,
ŷ-, ẑ-axes, and can be defined by

Rx(θ) ≡ exp−iΘX/2 = I cos
θ

2
− iX sin

θ

2
=

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
, (1.19)

and similarly for the other rotation operators Ry(Θ), Rz(Θ).

For the sake of completeness, other frequently used single-qubit gates are the phase gate
(denoted S) and the π/8 gate (denoted T ), whose corresponding matrices read as

S =

(
1 0
0 i

)
; T =

(
1 0
0 eiπ/4

)
. (1.20)

9
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a
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Figure 1.4.: Circuit representation of the controlled-NOT-gate.

1.2.2. Multiple-Qubit Gates

Multiple-qubit gates are very essential for quantum computational tasks, since they allow
individual qubits to interact with one another, conditional on the state of one or more
qubit(s). We will see in this section, that two-qubit gates can be employed to create
entanglement between two previously unentangled qubits, and since entanglement is such
an important resource in quantum information, such gates deserve appropriate attention.

Controlled-NOT Gate

One of the typical multi-qubit quantum logic gates is the controlled -NOT or CNOT-gate. It
consists of two input qubits, known as the control and target qubit, respectively. A circuit
representation is shown in Fig. 1.4. The top line represents the control qubit, while the
bottom line denotes the target qubit. The gate itself works as follows. If the control qubit
is set to 0, then the target qubit is left alone. If the control qubit is set to 1, then the
target qubit is flipped, thus resulting in the following, so-called truth table:

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

(1.21)

Another way of summarizing the action of the gate is |a, b〉 → |a, b⊕ a〉, where ⊕ denotes
addition modulo two, as can be seen in the circuit representation. Yet it is also possible
to give a matrix representation of the CNOT, with respect to the amplitudes |00〉, |01〉, |10〉
and |11〉, in that order.

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (1.22)

As we have shortly mentioned before, a CNOT-gate can be employed to create entanglement
between two initially independent particles, as we will now see. Suppose we have the
control qubit in a superposition state, i.e. |+〉 = 1√

2
(|0〉+ |1〉), while the target qubit is in

10
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Z ZH H

=

CNOTCSIGN

Figure 1.5.: Circuit representation of the controlled-SIGN-gate. With additional Hadamard
gates acting on the target qubit, the whole circuit is equal to the CNOT-gate.

the state |0〉. According to the CNOT truth table of Eq. 1.21, we end up with the state

|Φ+〉 =
1√
2
(|00〉+ |11〉), (1.23)

which is one of the maximally entangled Bell-states, as in Eq. 1.8. Thus, such a gate
can effectively entangle, but also disentangle any two qubits. It is therefore of utmost
importance in quantum computation to experimentally realize such a gate, as has been
achieved by various research groups [9, 10, 24].

Controlled-SIGN Gate

Further inspection reveals that the CNOT-gate is not the only two-qubit gate capable
of entangling two particles. Another very useful gate in quantum computations turns
out to be the controlled -SIGN-gate, or CSIGN-gate for short. The gate’s action in the
computational basis is specified by the following unitary matrix

CSIGN =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 , (1.24)

it therefore changes the sign on the |11〉 element to −|11〉. It turns out that applying
additional Hadamard gates acting on the target qubit before and after the CSIGN-gate,
results in the same action as the CNOT (see Fig. 1.5). Therefore we can write

(I⊗H) · CSIGN · (I⊗H) =




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


·




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


·




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 =

=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 = CNOT (1.25)
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Bell-state

+

+

+

GHZ-state

Figure 1.6.: Circuit representation to generate Bell- and GHZ-states by employing CSIGN-gates.
Note that, initially, the qubits are required to be in the superposition state |+〉 (see Eq. 1.26
and 1.27).

and a circuit representation can be seen in Fig. 1.5. So, in order to create entanglement
between two qubits, both the control and the target qubit have to be in a superposition
state |+〉,

|+〉 CSIGN−−− |+〉 −→ 1√
2
(|00〉+ |11〉) = |Φ+〉. (1.26)

Similar, if we connect three qubits, again all in the superposition state, then we end up
with an entangled three-particle GHZ-state [16], which is also a so-called 3-photon cluster
state (see Fig. 1.6).

|+〉 CSIGN−−− |+〉 CSIGN−−− |+〉 −→ 1√
2
(|000〉+ |111〉) = |Ψ〉GHZ (1.27)

If four (or more qubits) are entangled in the same manner as described above employing
concatenated CSIGN-gates, the resulting entangled state is the first cluster state to exhibit
a different kind of entanglement as it can not be written as a four-particle generalization of
the GHZ-state. Even further differences arise for the persistency of the entanglement, i.e.
reminders of such a cluster state can still be entangled after loss of particles or projective
measurements [12]. All in all, cluster states turn out to be a very efficient resource for
quantum computational tasks as will be discussed in the following section.

1.3. Quantum Computation

Since we have made ourselves familiar with the basic “rules” and “ingredients” of quantum
information, and by now have explained the most important and fundamental gates of
the quantum circuit model, we can now proceed a step further and investigate the power
and possibilities of quantum computation.

1.3.1. Universal Quantum Gates

In the theory of quantum computational networks, a gate is considered to be universal
if instances of it are the only computational components required to build a universal

12
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quantum computer. A set of gates is said to be universal, if any arbitrary unitary
operation can be performed by these gates alone.

It turns out that in theory, any unitary operation can be expressed exactly using
single qubit and CNOT-gates. Single-qubit gates on the other hand can be constructed
out of Hadamard, phase and π/8 gates. These four gates are therefore universal for
quantum computation and the interested reader is referred to Chapter 4.5 of Ref. [2] for
a mathematical proof.

1.3.2. Algorithms for Quantum Computers

The quantum computer is a very powerful application of the laws of quantum physics. It
is far more efficient at searching databases, factoring numbers and performing calculations
than any classical computer [4, 5].
Many quantum algorithms rely on a fundamental feature called quantum parallelism, and
in fact this is one of the main reasons why quantum computers so significantly outperform
their classical counterparts. Quantum parallelism allows, e.g. to evaluate a function f(x)
for many different values of x at the same time. By exploiting the feature of superposition,
a single circuit can be employed to evaluate the function, unlike in the classical case, where
multiple circuits have to be built. As one can probably guess by now, the Hadamard
operation plays an important role in most of these quantum algorithms, which shall be
introduced briefly in the following.

Grover’s Search Algorithm

Grover’s algorithm [4] is very important, both from a practical point of view, since it
allows fast database searching and is therefore critical for solving difficult problems, as
well as from a fundamental standpoint, since it is proven to be more efficient than the best
known classical algorithm. The goal of the algorithm is to identify one out of N elements
of an unsorted database. Classically, on average, one has to search (randomly) N/2 times,
while quantum parallelism boosts the probability of finding the desired element in only
O(
√

N) trials. In the case of N=4, the speedup is even more drastic, as Grover’s algorithm
needs only one trial, whereas classically three evaluations are needed in the worst case,
and 2.25 on average [13].

Shor’s Algorithm

In 1994, Peter Shor demonstrated that one of the most important problems, namely
finding the prime factors of an integer, can be solved on a quantum computer, providing
a spectacular speedup over classical, inefficient algorithms [5]. This kind of algorithm has
not yet been implemented with linear optics4, and since most of today’s cryptography

4However, Shor’s algorithm has been successfully implemented in a nuclear magnetic resonance experiment,
see Ref. [23].

13



1. Introduction

relies on the technique of encoding messages and data with the help of prime factors of
large integers, it is well worth mentioning.

Deutsch-Jozsa Algorithm

Although the Deutsch-Josza algorithm is of no particular practical use, it is still a neat
example of quantum parallelism. Suppose one is presented with a banknote, but is only
allowed to have a look at one of the faces. How can one, without touching (i.e. turning)
the banknote, determine with certainty whether it is legitimate or forged (i.e. both faces
are the same)? Classically the task seems impossible, but it turns out that one can solve
this problem by applying Deutsch’s algorithm. In other words, it allows to determine
the feature of a function (balanced or constant) with only one evaluation, as has been
demonstrated experimentally with ion-traps [22].

1.3.3. Quantum Computing with Cluster States

Usual or standard quantum computation is based on sequences of unitary quantum logic
gates that process the input qubits. A different and beautiful alternate way of performing
quantum computation is based on so-called cluster states, which are highly entangled
networks of qubits. The quantum computation is performed by a sequence of single-qubit
measurements, whose outcomes can be classically fedforward. One of the advantages of
this model is that errors, created by the intrinsic randomness of quantum measurement
results, can be corrected by classical feedforward. This feedforward makes cluster state
quantum computation deterministic. The order and choices of measurements determine
the algorithm which is computed, so the cluster state model may be regarded as a
truly measurement-only model of quantum computation that employs entanglement as
the sole resource. This idea was first put forward by Raussendorf and Briegel [12], and
recently experimental progress has been made with the first demonstration of a “einweg”
quantum computer with cluster states [13].

Every cluster state computation starts with the preparation of the cluster state,
which consists of highly entangled qubits. Such a cluster state can be built by preparing
a sufficient number of qubits, each in the superposition state |+〉 = 1√

2
(|0〉 + |1〉). A

CSIGN-gate operation is then applied between neighboring qubits, effectively generating
entanglement between them. This way, a number of different cluster states can be cre-
ated, each representing and implementing a specific quantum circuit. Very importantly,
theoretical work has shown that any quantum circuit can be implemented by a suitable
cluster state, thus making cluster state quantum computation universal [12].
Once the cluster state is prepared5, the computation is performed by consecutive
single-qubit measurements on this state. Any quantum logic operation can be carried out
by the correct choice of the measurement basis, which results in single-qubit rotations,

5If measurements are made in the computational basis, they effectively disentangle and therefore remove
the qubits from the cluster, therefore allowing the preparation of any arbitrary cluster state.
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1.3. Quantum Computation

Figure 1.7.: Graphical example of a six-qubit cluster state. CSIGN-gate operations have to be
applied between qubits which are connected in the graph.

together with a Hadamard operation6. An arbitrary single qubit unitary transformation
can be simulated using a four qubit cluster state and three measurements [13].

Also very interestingly, even small cluster states are capable of demonstrating quantum
computation, e.g. a four-particle “box”-cluster state is already sufficient to perform
Grover’s search algorithm. It seems that cluster states are very promising for future
implementations of quantum computers and the creation of such a cluster state is also
the main motivation of the experiment which is investigated in this thesis.

6Each qubit measurement simulates the unitary evolution HRz(Θ), where H is the Hadamard transfor-
mation and Rz(Θ) is a z-rotation defined by Rz(Θ)|0〉 → |0〉 and Rz(Θ)|1〉 → eiΘ|1〉.
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Now that we are familiar with the basic concepts of quantum computation and quantum
information, we will turn our attention to the experiment. In this chapter I will explain
theoretically how basic instances of a quantum computer can be built in the lab. To be
more precise, I will describe how to create suitable qubits (i.e. time correlated photons),
how they can be controlled and manipulated using linear optics devices such as beamsplit-
ters and waveplates and how quantum logic gates can be built out of that and in which
way they can be characterized using quantum state and process tomography. At the end
I will briefly show how a 3-photon cluster state can arise in our specific experiment.

2.1. Spontaneous Parametric Down-Conversion

As various experiments in quantum optics have to deal with single-photon states, a light
source which produces discrete photon numbers is very important. Unfortunately, produc-
tion and detection of such single photon states presents a major technological challenge.
In addition, such photon sources tend to be spontaneous, i.e. they produce photons only
randomly. Nevertheless, for the last twenty years, the choice for such single photon sources
has been spontaneous parametric down-conversion, or SPDC for short [25].

Phase-matching

Parametric down-conversion and its reverse process, second-harmonic generation (SHG)
typically takes place in non-linear optical materials, such as non-centrosymmetric crystals.
In such a medium, the individual components of the induced dipole polarization inside
the material can be written as a series expansion,

Pi = χ
(1)
ij Ej + χ

(2)
ijk Ej Ek + χ

(3)
ijkl Ej Ek El . . . , (2.1)

with Ei denoting the components of the electric field. At sufficiently high electric field
strength, the non-linear higher-order term (χ(2)) in the expansion becomes significant.
This eventually leads to oscillator terms which are driven by twice the frequency of the
incident light, so that the reradiated waves have an energy of 2 ω. This is called second-
harmonic generation, while spontaneous parametric down-conversion describes the reverse
process, in which light of energy 2 ω is spontaneously downconverted into two photons of
energy ω, where the probability for a photon to be down-converted is about 10−8 to
10−10. As the initial wave of ω propagates through the crystal, it continues to produce
second-harmonic waves which all add up constructively to form a single output beam
if they maintain a proper phase relationship. In order to obtain this phase relationship
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Figure 2.1.: Simplified scheme of type-II parametric downconversion and phase matching. On
the right hand side, one can see the colour dependent opening cones and their intersections,
where entangled photon pairs are emitted from the crystal. Picture courtesy of P.G. Kwiat.

and a good conversion efficiency, one must satisfy so-called phase matching conditions,
i.e. the relations of the wavevectors and frequencies of the light involved have to satisfy
momentum and energy conservation. In the process of parametric down-conversion, in
which a pump photon decays into two photons, the conditions read like

ωp = ωs + ωi (2.2)
−→
k p ≈ −→

k s +
−→
k i, (2.3)

where the subscripts p, s and i indicate the pump photon and the signal and idler photons,

respectively and
−→
k denotes the wave-vector in the non-linear medium. Most of the times,

the crystal is cut in such a way that light impinging perpendicular to the crystal face forms
an appropriate angle Θ with the optic axis so that the down-converted photons obey the
momentum conversation, therefore allowing easy phase-matching in experiments.
The overall interaction of the crystal with the pump light can also be written as a quantum
mechanical Hamiltonian

H = ga†pasai + g∗apa
†
sa
†
i , (2.4)

which has an elegant interpretation in the terms of photons1 and where g is a coupling
constant that contains the non-linear coefficient χ(2). The first term represents SHG,
while the second refers to SPDC, where a single “harmonic” photon is annihilated and
two photons at ω are created.

1a(†) is the annihilation (creation) operator in the Fock formalism, satisfying the conditions
a|n〉 =

√
n|n− 1〉 and a†|n〉 =

√
n + 1|n + 1〉, with n being the photon number.
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2.1. Spontaneous Parametric Down-Conversion

Different types of phase matching

There exist different types of phase-matching and I will briefly explain their characteristics
in the following. If the phase matching conditions are chosen such that all the created
outgoing light is in one direction, then the phase matching or down-conversion is said to be
collinear. In quantum optics experiments, the energies of both the signal and idler photons
are usually chosen to be of the same wavelength and therefore degenerate, which implies
ωp = (ωs + ωi)/2. For negative birefringent crystal, such as BBO (β-barium borate2),
the ordinary (o-) constituent of the beam travels faster than the extraordinary (e-) one
(no > ne), allowing to satisfy above equation(s)3. There are two possible (polarization)
combinations which correspond to two different types of phase matching. If we have an e-
polarized pump creating two o-polarized down-conversion photons, then it is called type-I,
while an e-polarized pump creating one e- and one o-polarized photon is known as type-II
phase matching4. In our experiment, we are employing collinear, type-I phase matching
for up-conversion (SHG), while exploiting non-collinear, type-II down-conversion for the
production of correlated photon pairs. In the latter case, the phase matching angle Θ is
chosen in such a way, that the down-converted, degenerate photons are emitted on two
cones, representing the signal (o-) and idler (e-)beam, as shown schematically in Fig. 2.1.

2.1.1. A Source for Entangled Photons

The distinct emission geometry of non-collinear type-II SPDC is very interesting, since
on the intersection of the cones it is impossible, in principle, to tell whether the photon
was emitted by the o- or e-cone, and because they correspond to different polarization,
the photons emerging along the intersections become polarization entangled. Note that
in order to obtain genuine entangled photons, one has to compensate longitudinal (tem-
poral) and transversal walk-off effects of the birefringent crystal due to group velocity
mismatch, which, in principle, make the two photons distinguishable because of their dif-
ferent propagation behaviour. This is experimentally done by sending the photons through
so-called compensation crystals, usually the same type of birefringent crystal (i.e. BBO in
our case), but of just half the thickness. If we further exchange the roles of ordinary and
extraordinary beam before the compensators by introducing HWP at 45◦, the temporal
and spatial walk-off will be canceled on average5. One might also argue that by employing
this method the information about the arrival time of the photon is erased, as can be seen
schematically in Fig. 2.2. However, at the end of the day, this leads to an entangled state
of the form

Ψ =
1√
2

(|V 〉1|H〉2 + eiϕ|H〉1|V 〉2
)
. (2.5)

2β-BaB2O4
3There are many textbooks on this topic, so one may want to start out with Reference [27].
4Of course it is also possible for an o-polarized pump beam to generate either type of down-conversion.
5This can also be achieved by orienting the optical axis of the compensators perpendicular to the BBO’s
optical axis, in practice, however, the first method leads to better visibility, probably because of how the
crystals are cut.
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Figure 2.2.: Since PDC is a spontaneous process, the down-conversion of the pump photon is
equally probable at any point within the crystal. Therefore, the temporal delay between a hori-
zontally and a vertically polarized photon varies depending on the crystal thickness. By inserting
compensators of half the thickness, one can, in average, delay the faster photon to erase the
information which of the photons is first. The additional HWPs in front of the compensators are
not shown for clarity. (Figure adapted from [26]).

The phase ϕ between the two coherent terms can be easily adjusted by introducing addi-
tional birefringent elements, or by slightly tilting one of the compensation crystals. In our
teleportation experiments, we choose ϕ = 0 or ϕ = π which results in the maximally en-
tangled |Ψ〉+ and |Ψ〉− state, respectively. For a more detailed description of an entangling
type-II photon source, we refer the reader to [25, 26].

Collapsed Cones

The opening angle of the cones in Fig. 2.1 is a function of the wavelength and can be
adjusted by a proper choice of Θ (i.e. sightly tilting the crystal in the experiment). In
the extreme case, it is possible to shrink the cones to single point sources, in which case
one obtains down-converted beams of higher intensity. This operation condition is also
known as type-II “collapsed cones” [38] and since we only exploit the time correlation of
our source and don’t need entangled photon pairs in the first instance, this is the phase
matching condition of choice in our CSIGN-gate experiment. A photographic picture of
the down-converted, collapsed cones can be seen in Fig. 2.3. Collapsed cones have a near-
Gaussian beam profile, allowing for easy and efficient coupling into single mode fibers. As
opposed to ring-like type-II downconversion, almost all of the down-converted light can
be harvested (i.e. coupled), resulting in higher photon pair count rates in the experiment
[38].

2.1.2. Gaussian Beam Propagation

Since the high intensity laser light, which is used to pump the nonlinear crystals, can
be described by Gaussian beams it seems worth having a closer look at the properties
of such beams and how their propagation can be simulated. This turns out to be very

20



2.1. Spontaneous Parametric Down-Conversion

Figure 2.3.: Photographic picture of collapsed cones type-II parametric down-conversion. The
intensity of the beams is much higher compared to ring-like type-II phase-matching in Fig. 2.1.
Picture courtesy of QT Lab.

useful when trying to couple as much down-converted light as possible in optical fibers,
as we will be doing in our experiment.

Gaussian beams are three-dimensional solutions of Maxwell’s wave equations in
free space. They are diffraction limited and characterized by the Gaussian shape of the
transversal intensity profile and are completely determined by the position and waist for
a given wavelength and refractive index, as can be seen in Fig. 2.4.
The beam radius ω(z) is usually defined as the radius where the intensity of the beam is
decreased to its 1/e2 value. Within the diameter 2ω(z), 86.5% of the whole beam power
is contained. As the beam propagates, the beam radius increases as a function of the
propagation distance z from the position of the waist ω0,

ω(z) = ω0

√
1 +

(
z λ

ω2
0 nπ

)2

, (2.6)

with ω0 being the radius of the beam waist and n being the refractive index. Another
helpful parameter is the Rayleigh length z0, which is defined by the distance where the
beam radius ω(z) =

√
2 ω0,

z0 =
nπ

λ
ω2

0. (2.7)

At this point, the wave front curvature is at its maximum, described by the curvature
radius R(z),

R(z) = z +
1

z

(
ω2

0 nπ

λ

)2

, (2.8)

and the divergence angle Θ for large distances from the waist can be determined by the
equation

Θ =
λ

nπω0

=
ω0

z0

. (2.9)

All those parameters are indicated and shown in Fig. 2.4.
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Figure 2.4.: Characterization and profile of a Gaussian beam. Beam waist ω0, Rayleigh length
z0, wave front curvature R(z) and divergence angle Θ are indicated.

ABCD-Matrices

A very helpful and elegant method for calculating the propagation of Gaussian beams is
by defining a complex beam parameter q(z):

1

q(z)
=

1

R(z)
− i λ

ω(z)2 nπ
(2.10)

With the help of this beam parameter, one can easily calculate the beam propagation
using so-called ABCD-Matrices. The propagation formalism is based on the final matrix,
which is obtained by including and considering all optical elements and paths in the range
of the propagation. ABCD-Matrices for all kinds of optical elements and paths exist, but
we will only be concerned by the matrices for free-space propagation L and converging
lenses F , since those are the only elements employed in our setup.

D =

(
1 d
0 1

)
; F =

(
1 0
− 1

f
1

)
, (2.11)

where d is the length of the free space propagation and f is the focal length of the
(converging) lens. By multiplying the respective matrices in the order of propagation, one
obtains a final matrix M with elements A, B, C and D, hence the name ABCD matrix.

(
A B
C D

)
= M = D1 · F1 ·D2 · F2 · · · · (2.12)

Based on this matrix, the beam parameter of the emerging beam can be calculated from

qout =
qin · A + B

qin · C + D
. (2.13)
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From this complex beam parameter, the physical relevant real values of the beam radius
ωout and wave front radius Rout can be obtained by

1

ω2
out

= −nπ

λ
Im

{
1

qout

}
(2.14)

1

Rout

= Re

{
1

qout

}
. (2.15)

2.2. Linear Optics Devices

2.2.1. Beamsplitter

BS

1

1

a1

b2

a2

b1

H

Figure 2.5.: The 50/50 beamsplitter acts like a Hadamard gate, creating superposition of the
in- and outgoing particles.

This useful device is nothing more than a partially silvered piece of glass, which is made
such that it reflects a fraction η of the incident light, and transmits (1-η). It is usually
made from two prisms with a thin metallic layer sandwiched in between. Most of the times
the beamsplitter is chosen to split the incoming light 50/50 into the two outgoing modes,
i.e. η = 1/2, so the action of the beamsplitter can be written as

a†1 → 1√
2
(a†2 + b†2)

b†1 → 1√
2
(a†2 − b†2), (2.16)

with a1 (a2) and b1 (b2) being the input (output) modes. It should be mentioned that,
in this formulation, the phase shift convention of π

2
upon reflection for symmetric beam-

splitters [28] has been incorporated into the second part of Eq. 2.16 (therefore the minus
sign). A closer look reveals that the beamsplitter transformation is the same as for the
Hadamard gate H (Eq. 1.17), as illustrated in Fig. 2.5.

Indistinguishability and HOM-Dip

Indistinguishability of quantum particles is a fundamental difference between classical
and quantum physics. Due to the uncertainty principle, it is often not possible to label
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BS

BS

before after

Figure 2.6.: Simplified scheme of photon bunching (left) and measured number of coincidences
in the Hong-Ou-Mandel experiment as a function of the path length difference (right). The picture
is taken from [29], where the dotted line represents the fit of the experimental data-points and
the solid line shows the theoretical trace.

and keep track of particular particles, if they, for example, overlap on a beamsplitter
as in Fig. 2.5. In other words, if there is no possibility, even in principle, to distinguish
those particles by their spatial or spectral mode or by any other means like polarization
and arrival time, then one cannot say whether both particles have been reflected or
transmitted. This gives rise to quantum interference, and due to the bosonic nature of
photons, the amplitude for these two events will cancel as we will see in the following.

Suppose both incoming modes of Fig. 2.5 are occupied with a single photon. Since
the beamsplitter acts like a Hadamard gate we can describe the action at the beamsplit-
ter as

H|1〉a|1〉b =
1

2

[
(a†2)

2 − (b†2)
2 + b†2a

†
2 − a†2b

†
2

]
|0〉. (2.17)

If now the two photons in modes a, b are indistinguishable, then the last two term in
Eq. 2.17 will cancel and we are left with the outgoing state of

|Ψ〉final =
1√
2

(|2〉a|0〉b − |0〉a|2〉b) , (2.18)

where a†|n〉 =
√

n + 1|n + 1〉. According to Eq. 2.18, all photon pairs will exit in the
same output mode and no coincidences will be observed after the beamsplitter. Such an
event is also called photon-bunching, and was first demonstrated experimentally by C.K.
Hong, Z.Y. Ou and L. Mandel in 1987 [29]. By employing parametric downconversion as
photon pair source and varying the photon path lengths in respect to each other, they
could observe a significant dip in the coincidence rate as a function of the delay, as can
be seen in Fig. 2.6.
This is also a nice method to measure time-intervals with sub-picosecond resolution, since
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the full-width-half-maximum (FWHM) of the dip corresponds to the coherence-length of
the wavepackets, which is usually in the order of 100-300 µm. The visibility or “depth” of
the dip is governed by the degree of indistinguishability between the photons and therefore
a good measure for the quality of the non-classical interference.

Polarizing Beamsplitters

Polarizing beamsplitters, or PBS for short, behave in almost the same way as ordinary
beamsplitters, but with the important difference that they only reflect vertically polar-
ized light, while transmitting horizontally polarized light. A number of different types
of PBSs exist, and they can be used as polarizers in optical experiments. Adopting the
nomenclature of Fig. 2.5, we can write the action of the PBS as

a†1H → b†2V

a†1V → b†1V

a†2H → b†1H

a†2V → b†2V

(2.19)

PBSs play a significant role in our experiments as we will see later on, so it is well worth
memorizing the action of those optical devices.

2.2.2. Half- and Quarter-waveplates

Half- and Quarter-waveplates, HWP and QWP for short, are very helpful optical elements
which change the polarization of incident waves or photons. They belong to a class of
optical elements known as retarders and are made of birefringent crystals, such as quartz
or calcite. Upon incidence on such an uniaxial crystal, the light is divided in two coherent
constituents of the beam, the ordinary and extraordinary (o- and e-) beam. If the optic
axis is arranged to be parallel to the surfaces of the waveplate, the e-wave will have a
higher propagation velocity than the o-wave if the waveplate is made of a medium with
negative birefringence. So, after traversing the waveplate of thickness d, there is a relative
phase difference of

∆ϕ =
2π

λ
d (|no − ne|) (2.20)

between the o- and e-waves, thus resulting in a different polarization, where no and ne

denote the refractive indices for the different beams.

HWP

The half-waveplate introduces a relative phase difference of π or 180◦ between the o- and e-
waves if the thickness of the plate is chosen correctly. Suppose then that the polarization
of incoming light makes some arbitrary angle Θ with the optic or fast axis, then the
half-waveplate rotates the polarization through 2 Θ. If Θ is chosen to be 45◦, then the
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polarization state of a photon will be flipped, i.e. |H〉 → |V 〉 and |V 〉 → |H〉. This
rotation action can also be represented by a matrix, the so-called Jones matrix for HWPs,

RHWP (Θ) =

(
cos 2Θ sin 2Θ
− sin 2Θ cos 2Θ

)
. (2.21)

Expressed in terms of creation operators in the Fock picture, this can be written as

a†H → a†V , a†V → a†H . (2.22)

However, if the HWP is set to be at 22.5◦, then it acts like Hadamard gate, creating
superposition between the |H〉 and |V 〉 polarization states, just like in Eq. 2.16.

a†H → 1√
2
(a†H + a†V )

a†V →
1√
2
(a†H − a†V ) (2.23)

QWP

The quarter-waveplate is an optical element which introduces a relative phase shift of
∆ϕ = π/2 between the constituent components of the beam. A phase shift of 90◦ converts
linear polarized light into elliptical light and vice versa. When linear light at 45◦ to the
principal axis is incident on a QWP, its o- and e-components have equal amplitude and
therefore emerge as circular polarized light.
The corresponding Jones matrix for the quarter-waveplate oriented at 45◦ reads like

RQWP = eiπ/4

(
1 0
0 −i

)
, (2.24)

while in the Fock formulation, the action of a QWP can be summarized as

a†H → a†H + ia†V , a†V → a†H − ia†V . (2.25)

2.3. Creation of a 3-Photon Cluster State

Now that we have finally got all the definitions straight, we can turn our attention to the
experiment and see how a 3-photon cluster state (i.e. a GHZ-state) can be realized using
linear optics devices and postselection alone.
Remember from Section 1.3.3, that in order to obtain a cluster state, one has to apply
an entangling two-qubit gate such as the CSIGN-gate between two individual qubits, each
being prepared in the superposition state |+〉. As we will see in the following, there
exists a new, elegant and simple method of implementing this gate with special polarizing
beamsplitters and half-waveplates.
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Figure 2.7.: Simplified scheme to generate a 3-photon cluster state (i.e. a GHZ-state). It con-
sists of two concatenated CSIGN-gates, where the input photons for the first gate (dotted box)
originate from PDC events while the third input photon consists of a weak coherent state. The
cluster state is observed conditioned on a 3-fold coincidence detection of the photons, which
occurs with probability 1/27.

2.3.1. The Simplified CSIGN-Gate

The heart of our simplified linear-optics CSIGN-gate is a special partial polarizing beam-
splitter, PPBS for short. It has the distinctive feature of perfectly reflecting vertical polar-
ized photons (i.e. RV =1), while only transmitting 2/3 of the incident horizontal polarized

photons, reflecting the remaining 1/3 (RH =
√

1
3
). If we adopt the nomenclature of

Fig. 2.7, where a1, a2 denote in incoming modes and a3, a4 the outgoing modes, then we
can write the action of the first and central PPBS as

a†1V → ia†3V ; a†1H → i

√
1

3
a†3H +

√
2

3
a†4H

a†2V → ia†4V ; a†2H →
√

2

3
a†3H + i

√
1

3
a†4H , (2.26)

where we adopted the convention that reflection off a beamsplitter results in a phase shift
of π

2
. Similar transformations can be written for all the other PPBSs shown in Fig. 2.7. If

we now choose input modes 1&2 to be occupied by qubits α|0〉+β|1〉 (see Eq. 1.1), both
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in a coherent superposition state (i.e. α = β =
√

1
2
), then according to our argument of

Section 1.2.2, the CSIGN-gate should have an entangling action on the two qubits. Said
that, after the first central PPBS we are left with the state :

|Ψ〉34 =
1

2

(
2

3
a†3Ha†4H −

√
1

3
a†3Ha†4V −

√
1

3
a†3V a†4H − a†3V a†4V

)
(2.27)

Since we postselect on coincidence basis, all terms with two photons occupying the same
mode (e.g. a†3Ha†3H) have been discarded from the state description.

After the first PPBS, two half-waveplates, both set at 45◦ to the optic axis, swap
the state of the qubit, so that we can relabel the subscripts of the state in Eq. 2.27 with
H → V and V → H. After traversing the second PPBS in Fig. 2.7, we end up with the
state

|Ψ〉68 =
1

3

(
a†6Ha†8H + a†6Ha†8V + a†6V a†8H − a†6V a†8V

)
, (2.28)

after postselecting coincidences in modes 6 and 8 only. Obviously, the |V 〉|V 〉 component
got a sign-shift due to the gate operation6. The amplitudes for the four different terms
are now all the same, therefore we say that the gate is balanced and the probability of a
successful gate operation is 1/9. Rewriting the output state in Eq. 2.28 gives

|Ψ〉68 ∝ |H〉6(|H〉8 + |V 〉8) + |V 〉6(|H〉8 − |V 〉8) = |H〉6|+〉8 + |V 〉6|−〉8, (2.29)

which is equivalent to the maximal entangled Bell-state |Φ〉+.7 The success probability of
1/9 for our new CSIGN-gate architecture is as high as previous realizations of entangling
gates [9, 30]. However, the construction of the gate is drastically simplified, as only one
non-classical interference condition (at PPBS 1) is required for successful gate operation.

2.3.2. Coherent State Input

In order to generate a 3-photon cluster state we have to concatenate two CSIGN-gates,
as is schematically shown in Fig. 2.7 and 7.1. As a third input, we choose an attenuated
laser beam, which can mathematically be described by so-called coherent states.

The coherent state |α〉 is the closest approximation to the quantum field gener-
ated by a laser and has properties similar to those of classical coherent light. But unlike
a classical field which contains a definite amount of energy (and therefore a definite
number of photons), a coherent state is made up of a superposition of photons

|α〉 =
∞∑

n=0

|n〉〈n|α〉, (2.30)

6Compare this to the CSIGN matrix of Eq. 1.24, where |0〉 is now encoded as |H〉 and |1〉 as |V 〉.
7One can check this by letting a halfwave-plate at 22.5◦ act on the second qubit, transforming |+〉 → |H〉
and |−〉 → |V 〉, therefore resulting in |Ψ〉68 ∝ |H〉6|H〉8 + |V 〉6|V 〉8.
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where |n〉 is the number state in the Fock formalism, i.e. photons are generated by a
successive application of the creation operator

|n〉 =
(a†)n

√
n!
|0〉. (2.31)

So, by combining Eq. 2.30 and 2.31 and bearing in mind the completeness of the number
state basis, one obtains the mathematical description of the coherent state |α〉,

|α〉c = e−
|α|2
2

∞∑
n=0

αn(a†)n

√
n!

|0〉. (2.32)

In fact, coherent states are experimentally produced by properly attenuating a laser beam,
as will be done in our experiment later on, and in practice, α is chosen to be sufficiently
small (α ¿ 1) so that the state

|α〉c ∝ |0〉+ α|1〉+
α2

√
2
|2〉+ · · · (2.33)

has main contributions of the first two terms only, with the vacuum state most of the
times. With probability |α|2 the mode contains one photon, while the contribution of two
photons in one mode is almost negligible.

The proper choice of α is very important for the outcome of the experiment, as
the coherent state represents our third input photon for the creation of the 3-photon-
cluster-state, as we can see in Fig. 2.7. However, for the sake of simplicity, let us assume
that α is chosen in such a way that, ideally, one photon is released into the gate whenever
there are two down-conversion photons exiting the first PPBS in our setup.
Then we can prepare the coherent state photon with a half-waveplate to be in the
superposition state |+〉, so that we effectively have the state

|α〉c =
α√
2
(a†Hc + a†V c), (2.34)

with α ¿ 1, entering the second PPBS. Applying the right transformation rules8 similar
to those in Eq. 2.26, postselecting three-fold coincidences between output modes 6, 8 and
10 plus a little calculus then leave us with the three particle state

|Ψ〉6,8,10 ∝ |HHH〉+ |HHV 〉+ |HV H〉 − |HV V 〉
+|V HH〉+ |V HV 〉 − |V V H〉+ |V V V 〉, (2.35)

which contains all eight possible computational state arrangements. This state is equiva-
lent to a maximally entangled three-particle GHZ-state [16], as can be seen by rewriting
|Ψ〉6,8,10 as

|Ψ〉6,8,10 ∝ |+ H+〉+ | − V−〉. (2.36)

8i.e., interchange the subscripts of Eq. 2.26 as follows: 1→4, 2→c, 3→8, 4→7 and similar for PPBS 4.
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By applying local rotations on qubits 1 and 3 this results in a 3-photon-linear cluster
state, which is indeed equivalent to the better known GHZ-state

|Ψ〉GHZ ∝ |HHH〉+ |V V V 〉. (2.37)

The probability of successful gate operation is 1/27, which compares favourably with
(1/9)2=1/81, which would be achieved if two individual CSIGN-gates would be placed
in succession. It is one of the main advantages of this circuit (setup), that gates can be
concatenated this way with the successful operation scaling as (1/3)n rather than (1/9)n−1,
where n is the number of qubits in the circuit [19].
Applying this strategy, in principle, an arbitrary number of qubits can be connected (i.e.
entangled), creating an N-qubit cluster state useful for quantum computation. Other useful
applications of this circuit include the ability to disentangle and therefore distinguishing
every GHZ-state (if the circuit is run in reverse) and the possibility to perform parity
checking, i.e. identifying bit-flip errors while preserving the superposition of the qubits
and can therefore be used to demonstrate bit-flip error correction [31].

2.4. Gate-Tomography

Now that we have examined how our CSIGN-gate creates entanglement between individual
qubits we wish to characterize the dynamics of our gate experimentally, i.e. how and
with which fidelity the gate transforms our given input states. Fortunately, there exist
a mathematical model for doing this: Quantum Process Tomography, which reconstructs
the evolution operator that completely describes the dynamics of our quantum gate. But
to understand process tomography, we first need to explain quantum state tomography.

2.4.1. State-Tomography

In a nutshell, quantum state tomography is the procedure of experimentally determining
an unknown quantum state, i.e. an exact measurement of all the components of the states.
As Stokes [32] showed, the polarization state of a single photonic qubit can be determined
by taking a set of four projective measurements which are represented by the operators

µ0 = |H〉〈H|, µ3 = |D〉〈D|,
µ1 = |V 〉〈V |, µ4 = |R〉〈R|, (2.38)

and similarly the state of two qubits can be determined by a set of 16 measurements
(represented in the following by |Ψ〉ν , ν = 1, 2, ..., 16 ), which are all possible permutations
of the above operators µi ⊗ µj, where i,j=0,1,2,3. In general, a n-qubit system requires
4n measurements.
The average number of counts in the detector is given by the formula ni = N tr(ρ · µi),
where ρ is the density matrix representing the state of the qubit and N is constant that can
be determined from the experimental data (includes light intensity, detector efficiency).
Since we want to characterize the output of a two-qubit gate, lets from now on only
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Figure 2.8.: An example for a two-qubit density matrix reconstructed by quantum state tomog-
raphy employing maximum-likelihood estimation. The left plot shows the real part of ρ, the right
plot the imaginary part. This plot shows a density matrix of an experimentally prepared and
entangled state |Φ〉− = 1√

2
(|HH〉 − |V V 〉).

worry about state tomography of a two-qubit system. The density operator representing
this two-qubit state is a 4x4 density matrix with 16 real parameters (of which 15 are
independent). For the density matrix to be physical, we want it to be:

• hermitian, i.e. ρ = T †T

• non-negative, i.e. 〈Ψ|ρ|Ψ〉 ≥ 0

• normalized, i.e. ρ = T †T
tr(T †T )

As mentioned above, the matrix is a function of 16 real variables, which we will denote
as t1, t2, ..., t16. For various reasons [33], it is useful and convenient to choose a tridiagonal
form for T :

T (t) =




t1 0 0 0
t5 + i t6 t2 0 0

t11 + i t12 t7 + i t8 t3 0
t15 + i t16 t13 + i t14 t9 + i t10 t4


 (2.39)

To quantify how good the density matrix ρ(t1, t2, ..., t16) is in agreement with the measured
experimental data (i.e. coincidence rates), we introduce the so-called “likelihood-function”,
which represents the deviation of the density matrix ρ from the measurement. Since the
expected number of coincidence counts in a given experimental run is given by

nν = N〈Ψν |ρ|Ψν〉, (2.40)
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the deviation from the observed νth coincidence measurement is represented by

∆f =
16∑

ν=1

(nν −N〈Ψν |ρ|Ψν〉)2

2N〈Ψν |ρ|Ψν〉 (2.41)

with ∆f being the likelihood-function9, ρ being a function of t1, t2, ..., t16 and N =
∑4

ν=1 nν

(see [33]). Fortunately, mathematic computer packages like Mathematica 5.0 are able to
execute an algorithm which finds the minimum of this functions and all corresponding
values of t1, t2, ..., t16, and therefore the desired density matrix which represents our two-
qubit system. An example can be seen in Fig. 2.8.

2.4.2. Process-Tomography

Although we now have determined the output quantum states via quantum state tomogra-
phy (QST), we still do not know the dynamics of our gate, i.e. in which way it transforms
our given input state. However, in a similar manner to QST, a set of output states enables
the reconstruction of the gate operation. To determine this quantum transfer function,
we have to determine the linear map E, which completely describes the dynamics of the
quantum system, in our case the CSIGN-gate, so that the state change experienced by the
gate can be written as

ρ → E(ρ), (2.42)

where we have to obey the condition that the trace tr(E(ρ)) is always equal to one. Any
quantum operation E can also be written in the so-called operator sum representation
for an arbitrary input state ρ

E(ρ) =
∑

k

EkρE†
k, (2.43)

where Ek are the operation elements and have to obey the completeness relation,

∑

k

E†
kEk = 1, (2.44)

to ensure that ρ remains hermitian with trace one. The set of operation elements {Ek}
completely describes the action of the gate and with process tomography we want to
experimentally determine some of the Ek matrices. If one now chooses a fixed basis {Ẽm}
for the operators on the state space then we can express the operation elements in this
basis as Ei =

∑
m aimẼm and Eq. 2.43 becomes

E(ρ) =
∑
mn

χmnẼmρẼ†
n, (2.45)

9Actually, this is not as straightforward as it seems. The likelihood P that ρ reproduces the data, given
the coincidence measurements have a Gaussian probability distribution, is
P =

∏16
ν=1 exp

[
− (nν−N〈Ψν |ρ|Ψν〉)2

2N〈Ψν |ρ|Ψν〉
]
, where the standard deviation is given approximately by Poissonian

noise, i.e.
√

nν . But it is actually easier to find the minimum of the logarithm of this function P , which
leads us eventually to Eq. 2.41.
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where χmn is a positive hermitian matrix χmn =
∑

i aima∗in that now completely describes
the process in the chosen basis.

Usually the basis of input states is chosen such that the matrices ρ(jk) represent-
ing them all have a 1 in the jth row and kth column and zeros elsewhere. A suitable set for
the experiment are the operators |H〉〈H|, |V 〉〈V |, |D〉〈D|, and |R〉〈R|, which are related to
some other basis ρ(αβ) by ρ(jk) = M−1ρ(αβ) and the 16x16 matrix M−1 can be found in [34].

The complete set {ρ(αβ)} of input states for two-qubit tomography consists of 16
two-qubit states given by all the tensor products of the single-qubit states10,

{ρ(αβ)} = {ρ(α) ⊗ ρ(β)}, α, β ∈ {H,V,D,R}, (2.46)

and performing tomography on each of them one obtains a set of output matrices {Eρ(jk)}
using the inverted M matrix of Reference [34]. It is then possible to reconstruct the 16x16
χ matrix in block form:

χ = KT




Eρ(11) Eρ(12) · · ·
Eρ(21) Eρ(22) · · ·

...
...

. . .


 K, (2.47)

where K is a particular matrix written as K = P · Λ with the permutation matrix P =
I⊗[ρ(11)+ρ(23)+ρ(32)+ρ(44)]⊗I and Λ = [Z⊗I+X⊗X]⊗[Z⊗I+X⊗X]/4. Unfortunately,
this procedure does not allow the incorporation of experimental uncertainties for a full
error analysis. But still there exists a measure which tells how much the obtained process
matrix resembles the ideal gate, namely the gate fidelity Fg between the ideal, target
unitary gate U and the actual process E

Fg(U, E) = min〈Ψ|U †E(|Ψ〉〈Ψ|)U |Ψ〉, (2.48)

with U being, in our case, the ideal CSIGN matrix and the minimum is over all input
states |Ψ〉.

However, similar to QST, the process matrix χ can give unphysical results in cer-
tain cases and numerical optimization methods have been developed which account for
this, very much equal to the maximum-likelihood approach in QST11.

10where, for the sake of completeness, the single qubit states are written as

ρ(H) =
(

1 0
0 0

)
, ρ(V ) =

(
0 0
0 1

)
, ρ(D) = 1

2

(
1 1
1 1

)
and ρ(R) = 1

2

(
1 −i
i 1

)
.

11Since we don’t want to confuse the reader more than necessary we refer to [34, 35, 36] for a detailed
description of this numerical optimization method.
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3. Description of the Setup

This chapter briefly describes the basic outline of the (optical) setup at the University of
Queensland and of all the equipment that is being used, such as lasers, detectors, filters,
etc. A simplified scheme of the setup can be seen in Fig. 3.2 and we will often refer to it
in the following.

3.1. Lasers

The principal photon source for our experiment is a Titanium Sapphire Laser
(Ti:Sapphire) from Spectra Physics called “Tsunami”. It is pumped by a Millennia
X laser, which consists of a Neodymium Yttrium Vanadate (Nd:YVO4) laser crystal
and produces 10W of infrared power which is subsequently frequency-doubled to 532 nm
which is its output wavelength. The Millennia itself is pumped by two 20 W fiber-coupled
diode laser bars located in the power supply.

The Millennia-pumped Tsunami is a mode-locked pulsed laser configured for a
wavelength tuning range of 750-850 nm, where it produces an average power of 1.3W
at a repetition rate of 78MHz. Wavelength selection is done with a birefringent filter,
that consists of crystalline quartz plates placed in the laser cavity at Brewster’s angle.
The plates are cut parallel to their optical axes, and due to their birefringence the
linear polarization of the incident laser beam becomes elliptical. Only a narrow range of
wavelengths makes a complete 180◦ (or multiple thereof) polarization flip and remains
linearly polarized; all other wavelengths are transformed to elliptically polarized light
and suffer losses at each Brewster-angle surface within the cavity and, therefore, fail to
reach lasing threshold. Rotating the filter about an axis normal to the plates changes the
wavelengths that remain linear polarized and therefore allow the output wavelength to
be tuned. To change the pulse width, one can modify the net group velocity dispersion
(GVD). The optical components in the laser cavity introduce positive GVD and cause
pulse spreading. In order to obtain stable, short output pulses, these effects must be
compensated with negative GVD, which can be achieved and controlled by a so-called
Gires-Tournois Interferometer. It also allows alignment of the laser cavity and therefore
optimization of output power and mode quality.

The Tsunami in this experiment is operated at 820 nm width a pulse length of
approximately 65 fs, resulting in a FWHM of ∆λ=12-14 nm. The spatial output mode is
the TEM00 mode (Gaussian beam profile) and the polarization is vertical with quality
500:1. A spectrometer is placed close to the output window of the Tsunami and facilitates
wavelength tuning if laser light is scattered towards the measurement head.
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Figure 3.1.: Left Picture: State preparation for the optical CSIGN-gate. The photons emitted
by the single-mode fiber traverse a PBS, which only transmits horizontally polarized photons.
Subsequently, a HWP and a QWP prepare the desired polarization state of the photon.
Right Picture: Analyzer and detector. The automated analyzer consists of motor-driven HWP
and QWP, and a PBS acting as a polarizer. To the left one can see the head of the detector and
the filter/lens combination, hidden behind black cloth.

3.2. Optical Setup

The infrared 820 nm laser light is focused on a birefringent BBO crystal with a planconvex
lens1 (35mm focal length), where second-harmonic generation converts a small fraction
of the incident light to blue 410 nm (see Section 2.1), resulting in a pump beam of ap-
proximately 200mW power. A second lens collimates the light again and two fast prisms
spatially separate the remaining red light from the desired blue laser light. Some of the
red light is attenuated and coupled into single-mode fiber and used as the coherent state
input in the setup, as we shall later see. The blue beam, however, continues and is focused
by a 125 mm lens onto another BBO crystal, after traversing a HWP. This, second BBO,
is cut for collapsed cones type-II parametric down-conversion (again, see Section 2.1 for
details) and the HWP allows one to change the incident polarization at the crystal2. After
the crystal, a special high pass band filter blocks the remaining blue light and transmits
the down-converted red light. A series of (flipable) mirrors directs the light to 2 Thorlabs
Fiber-Couplers (FC), which collect and focus the beam with a 4 mm lens onto a 820 nm
single-mode fiber of roughly 5 µm core diameter. The position and focal lengths of the
lenses have been calculated by means of Gaussian beam propagation, as described in Sec-

1both lenses and the crystal are antireflection (AR) coated for 410 and 820 nm.
2since the BBO is cut for type-II PDC, only horizontal light will be down-converted and by turning the
waveplate, one can easily check whether detected light is due to down-conversion.
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3.3. Detectors

tion 2.1.2 to achieve the best fiber coupling efficiency possible [37]. The single-mode fibers
only allow propagation of the Gaussian TEM00 mode and therefore serve as spatial mode
filters. (Output-) Polarization can be controlled by twisting the fiber in a special mount,
so-called Polarization Controllers3. After the beam is collimated again by another set of
FCs, it enters the optical CSIGN-setup (Fig. 3.2) through a combination of PBS, HWP
and QWPs each (see left picture in Fig. 3.1). These waveplates allow one to prepare any
polarized light as input states for the CSIGN-gate, namely H-, V-, D- and R- polarized
light. The two input states (i.e. polarized photons at that point) propagate through the
gate as described in Section 2.3.1, and are afterwards detected by an automated polar-
ization analyzer, which consists of HWP, QWP and a PBS acting as a polarizer, only
transmitting H-polarized light to single photon detectors (see Fig. 3.1). Each input HWP
and QWP is precision mounted, that means their angle can be adjusted with a resolution
of 5 degree-minutes. Those waveplates making up the automated polarization analyzer are
mounted in motordriven Newport Rotation Stages, and they can be turned with an angle
resolution of 1 degree-minute with the help of a Newport Motion Controller. This Con-
troller is part and parcel of the whole experiment, since it allows for automated quantum
state (and process) tomography, as we will later see.

3.3. Detectors

Eventually, as in any quantum optics experiment, the light, i.e. the photons, has to be de-
tected. In our experiment, we use Perkin Elmer Single Photon Detectors (SPCM-AQR-14 -
Si APD Single Photon Counting Module) with less than 100 dark counts per second (cps).
These are silicon avalanche photon detectors which have an overall detection efficiency of
approximately 40-45% on their imaging area of 175 µm diameter. The semiconductor sil-
icon is operated with a reverse bias voltage in excess of its break down voltage, called the
Geiger-mode, so that the energy of a single incident photon triggers a electron “avalanche”,
that is further amplified and converted to a 35 ns wide TTL pulse of 2.5 Volts (minimum)
high in a 50Ω load. There is a “dead time” of 50 ns in between pulses and the modules
require a +5 Volt power supply. One has to take extreme care not to expose the detectors
to excessive light intensities, and therefore narrow-banded interference filters (3 nm) are
used in front of every detector, in conjunction with lenses which focus the beam onto the
detection area. The space in between the detector and filter/lens mount is covered with
black drapery (see right picture in Fig. 3.1).

3.4. Coincidence Logic

The scheme of the experiment requires us to detect photons simultaneously or “in co-
incidence”, because only then the gate operates as desired and outlined before (coinci-
dence postselection). We employ an Ortec Time-to-Amplitude Converter/SCA Coinci-
dence Logic (TAC-SCA) and a CCNIM Quad 100-MHz Counting device, as well as an

3For more details concerning Polarization Controllers, see Section 9.3.1.
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3. Description of the Setup

Ortec Delay Generator to look for coincidence signals from the photon detectors. The
coincidence window and the delay are set such that only photons detected within a time
window of 1 ns are registered and counted. The counting module can be accessed via a
IEEE-488 interface so that the single and coincidence counts can be observed on a com-
puter. But more interestingly, it allows for automated measurements and data collection.
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4. Experimental Procedure

Now that we have extensively discussed the prerequisites, let us now proceed to the more
exciting part of this thesis, the experiment itself. After explaining shortly how to create
time correlated photons via our parametric-down-conversion source, calibrate the wave-
plates and find the HOM Dip, I describe the procedure for the gate tomography, which
we will need to perform in order to determine the action and fidelity of our CSIGN-gate.

4.1. Pre-experimental Alignment

In order to be able to carry out the experiment in a reasonable way, one needs a proper
source of time correlated photons, or in other words, a decent down-conversion (DC)
source with high coincidence rates. While tweaking up the output power of the laser
(without changing the wavelength) is a rather straight-forward task, obtaining good
conversion- and collection-efficiencies of the parametric down-conversion is not. In our
setup, we are employing type-II “collapsed cones” PDC [37] as our phase matching
condition of choice, as explained in Section 2.1.1. To check whether one is operating
the crystal at the right conditions, a CCD camera was set up approximately 1m after
the BBO crystal, and two lenses were employed to focus both down-conversion beams
onto the imaging area of the camera. By slightly tilting the crystal to adjust the phase
matching condition, we aimed for down-conversion as depicted in Fig. 2.3. By turning
the HWP in front of the BBO one can verify whether the detected light is really
originating from down-conversion, since light due to fluorescence or background is in
general unpolarized. Unfortunately, perfect phase matching as in Fig. 2.3 was never
achieved with one of the two cones always being slightly less intense than the other.

We then proceeded and started to couple as much of this down-converted light
into single-mode optical fibers, which I will describe briefly in the following:
Once reasonable DC is picked up by the CCD camera, the camera is removed together
with the two lenses and free-space detectors are placed in the line of the emerging
down-conversion beams, approximately 1.5 m after the BBO. As soon as they pick up a
signal due to the DC, the coincidence rate is improved by tweaking up the singles rate in
one of the two arms and subsequently following with the other detector by observing the
coincidence rate. This way we achieved a photon pair rate of around 16000 per second,
with a background of about 1000 per second due to accidental coincidence counting1.

1Accidentals occur due to high single photon count rates, which result in two random (i.e. not from DC)
photons arriving at the logic within the coincidence window of 1 ns. In general, the accidental coincidence
rate is calculated by Cacc = S1S2

τ , with S1,2 being the singles rates and τ being the coincidence window.
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Figure 4.1.: Half-waveplate (a) and quarter-waveplate calibration (b,c). See text for further
explanation.

Next we set up two irises in each DC arm, therefore fixing the line of the emitting DC
light in space. This way, with the help of a visible diode laser at 670 nm and additional
flipping mirrors, it was possible to pre-align the fiber-couplers to a sufficient degree so
that fiber coupling the DC light was simplified. Once the polarization and the focus was
readjusted for 820 nm DC photons, tweaking up the coincidence rates by “walking-in”
the fiber couplers yielded around 300 coincidences a second between Detector 1&2 (see
Fig. 3.2)2.

4.1.1. Waveplate Calibration

Overall, nine half-waveplates and six quarter-waveplates are employed in the experi-
mental setup, serving for input state preparation, output state analysis or for flipping
the polarization in between beamsplitters. Waveplates have been discussed in detail
in Section 2.2, so I will only describe their calibration in the following. Since accurate
waveplate settings are of major importance for the precision of the experiment, their
calibration has to be carried out with great care.

For calibration purposes, a 820 nm laser diode and two PBSs, both set to transmit
horizontal polarization, are set up in front of a photometer (PM), as shown in Fig. 4.1.

2This was measured with vertically (V) polarized photons entering the CSIGN-gate, while the HWP in
between the PPBS were set to “0”, i.e. they don’t change the polarization. This way both input photons
were perfectly reflected at each PPBS and finally detected in coincidences without any major losses due
to interference effects.
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4.1. Pre-experimental Alignment

In succession, each of the half-waveplates was inserted between the two polarizing BS
and rotated in steps of 5◦, while the intensity was measured and recorded, eventually
obtaining a full fringe pattern. By fitting this fringe with a Sine-function, the position
(i.e. the actual angle on the precision-mount of the waveplate) of the optical axis could
be calculated. In principle, whenever the optic axis subtends an angle of 45◦ with the
horizontal polarized light, it will flip its polarization and therefore fails to transmit the
second PBS, resulting in an intensity minimum at the photometer.
A similar approach has been taken for the calibration of the quarter-waveplates. When
linear light at 45◦ to the principal axis is incident on a QWP it is transformed into circular
polarized light, which eventual results in a 50% drop of intensity at the photometer.
Once we had done this for one the QWPs we subsequently used it (QWP No. 3) as a
reference for the calibration of the other QWPs. When inserted one after the other in
between the PBSs the two QWPs will form an effective HWP if both principal axes (“fast
axes”) line up in the right way. Therefore the polarization of the light is flipped at this
position, again resulting in a minimum intensity at the photometer and by Sine-fitting
the intensity fringes we could calculate the position of the optical axis with a precision
of about ± 0.5◦.

4.1.2. PPBS-Characterization

Since the PPBSs and their unique feature of reflecting 1/3 of the incident horizontally
polarized light is so important for the proper action of our gate, we checked and charac-
terized their behavior. By using both a laser diode at 820 nm and single photons from the
PDC source (femtosecond pulse characteristic), we found the actual splitting ratio to be
28:72± 0.01 for PPBS 1 &2 and 29:71± 0.01 for PPBS 3. Unfortunately this deviation
from the ideal splitting ratio of 1/3 : 2/3 can not be compensated and therefore perfect gate
operation cannot be ensured. In addition this also hinders the perfect quantum interfer-
ence at the PPBS (photon indistinguishability), leading to a HOM-Dip of lower visibility,
as can be seen in the next section. While a splitting ratio of 1/3 : 2/3 would allow an ideal
visibility of 80 %, the deviation from the ideal splitting ratio results in an ideal visibility
of Videal=67%, where the ideal visibility for general reflectivity η can be calculated3 as

Videal = 1− |(1− η)− η|2
|1− η|2 + |η|2 . (4.1)

4.1.3. HOM-Dip

Indistinguishability between quantum wavepackets gives rise to quantum interference
and since this non-classical interference and its quality at the PPBSs is crucial to the
performance of our CSIGN-gate, one has to make sure to meet all the requirements to
make them indistinguishable. Photons, in principle, can be distinguished due to any
differences in their spectral-, spatial- and polarization- as well as their temporal mode

3The HOM-Dip visibility is defined as V = Max−Min
Max , where Max denotes the countrate outside of the

HOM-Dip, hence |1− η|2 + |η|2 and Min is the low-point of the dip and given by |(1− η)− η|2.
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4. Experimental Procedure

Figure 4.2.: Graphical representation of the HOM-Dip-Search. One clearly sees the Gaussian
shape dip in coincidence count rates between Detector 1& 2, indicating the position of ideal
temporal overlap of the input photons. The observed HOM-Dip yields a visibility of 64%, which
corresponds to a visibility of 96% relative to the ideal.

so the experimenter has to ensure their indistinguishability in every degree of freedom.
To “erase” the identity of the photons due to different spectral modes, narrow-band
interference filters with FWHM ∆λ=3nm, centered at 820 nm, were placed in front of the
detectors, stretching the coherence length4 of the photons to lc ≈150µm. Additionally, to
ensure that both input photons perfectly interfere at the central PPBS, the preparation
waveplates (see Fig. 3.2 and Table 4.1) were set to prepare horizontally polarized light5

and the input fiber couplers have been aligned so that both input beams spatially overlap
at the PPBS to the highest degree possible6. One of the harder parts in the experiment is
to guarantee that the input photons arrive at the beamsplitter at the same time so that
there is no temporal mode-mismatch between them. As already outlined in Section 2.2.1,
the observed coincidence rate after a beamsplitter is a function of the temporal delay
between the two photons which manifests itself in the well-known Hong-Ou-Mandel-Dip
(see Fig. 2.6). By slightly varying one of the two down-conversion path lengths, this dip
can be reproduced, indicating the ideal path length at the low point of the dip. We realized

4This effect also facilitates the temporal mode-matching, as discussed below. Generally the coherence
length lc of pulsed laser light is roughly given as lc ≈ λ2

∆λ
5This is important, since V-polarized light is perfectly reflected by the PPBS and therefore can’t interfere.
6To ensure perfect interference, the input beams have to perfectly overlap on the PPBS as well as after the
beamsplitter. A visible diode laser at 670 nm coupled into the single mode fibers has been used to walk
the input fiber-couplers in such a way, that, when their intensities were matched, classical interference
could be observed at the output of the PPBS.
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4.2. Quantum Process Tomography of the Gate

|H〉 |V 〉 |D〉 |A〉 |R〉 |L〉

Input 1 HWP 13 34◦ 17’ 79◦ 17’ 56◦ 47’ 11◦ 47’ 34◦ 17’ 79◦ 17’
QWP 3 96◦ 35’ 96◦ 35’ 141◦ 35’ 141◦ 35’ 141◦ 35’ 141◦ 35’

Input 2 HWP 15 6◦ 59’ 51◦ 59’ 29◦ 29’ 344◦ 29’ 6◦ 59’ 51◦ 59’
QWP 2 14◦ 22’ 14◦ 22’ 59◦ 22’ 59◦ 22’ 59◦ 22’ 59◦ 22’

Table 4.1.: Individual waveplate settings to obtain the input states for the tomography experi-
ment according to the waveplate calibration.

this by placing one of the fiber couplers (FC2) onto a pico-motor-driven translation stage,
which was controlled via the Newport motion controller. The outcome of the HOM-Dip
search with H-polarized input photons can be seen in Fig. 4.2. The visibility or “depth”
of the dip is governed by the degree of indistinguishability between the photons and is
therefore a good measure for the quality of the non-classical interference. It is important
to note at this stage that, since the PPBS have the feature of reflecting H-polarized light
with probability 0.28, the maximum achievable visibility7 in our case is 67%.

We achieved a total visibility of 64%, corresponding to a visibility of 96 % relative
to the ideal, indicating good indistinguishability of the input photons. To check whether
the PPBSs are working accordingly, we also performed a HOM-Dip-Search in |V V 〉, i.e.
with V-polarized photons entering the CSIGN-gate. As expected, there was no noticeable
HOM-Dip contribution in |V V 〉, suggesting that the PPBSs really reflect all of the
incident vertically polarized light.

4.2. Quantum Process Tomography of the Gate

Quantum process tomography that describes the action of a quantum system (in our case,
the CSIGN-gate) consists of state tomography performed for a complete set of input states.
To be able to reconstruct the process matrix χ, all possible permutations of the output
states (i.e. |HH〉, |HV 〉, ...) have to be measured for every input state. While a certain
set of 16 measurements would already be sufficient to perform state tomography, all 36
permutations of the output states |H〉, |V 〉, |D〉, |A〉, |R〉, |L〉 have been measured. This
allows one to sort the collected data into complete sets of POVMs, which can be then
normalized on a small scale (after 4 measurements, e.g. |HH〉, |HV 〉, |V H〉, |V V 〉). If
one chose only 16 measurements instead, this normalization would run over the whole
set, and fluctuations in count rates due to air-conditioning cycles8 (on the time-scale of

7In our case, the visibility is defined as V = Cout−Cdip

Cout
, where Cout denotes the coincidence countrate

outside of the dip and Cdip is the measured countrate at the low point of the HOM-Dip. The relative
visibility Vrel is given by Vrel = V

Videal
.

8Previous experiments have shown that temperature fluctuations due to the air-conditioning cycles influ-
ences the detectors, resulting in slight variations of the count rates.
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Output |H〉 |V 〉 |D〉 |A〉 |R〉 |L〉

HWP 0◦ 45◦ 22.5◦ 67.5◦ 0◦ 45◦

QWP 0◦ 0◦ 45◦ 45◦ 45◦ 45◦

Table 4.2.: Waveplate settings (not incorporating the calibration) for preparing and measuring
the states |H〉, |V 〉, |D〉, |A〉, |R〉, |L〉. Note that due to the order of the waveplates (HWP before
QWP), if the photon is prepared (measured) in the state |D〉 (|A〉), the QWP has to be rotated
as well (to ±45◦), since otherwise circular polarized light would be created.

30 minutes) would affect the data. To facilitate the data collection (576 measurement
settings correspond to 576 different waveplate settings!!), a LabView routine was written
and employed that would perform a complete state tomography (36 measurements). So
only the 16 input states had to be set manually, therefore speeding up the data collection
tremendously. The routine executes as follows: After the input states have been prepared
manually according to Table 4.1, the routine automatically rotates the analyzer waveplates
in front of Detector 1&2 to measure the output states according to Table 4.2, starts the
counting module and records the coincidence counts for a prior specified integration time
(between 10 and 30 seconds), before moving the waveplates to the next measurement
setting and saving the collected data after a complete run. The thus obtained data was then
evaluated with a MatLab program that performs state tomography with the maximum-
likelihood technique as described in Section 2.4.1. This procedure was repeated for all 16
input states and the process matrix was reconstructed from the state tomography results
again employing a MatLab code written by Alexei Gilchrist and Nathan Langford [35, 36].
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5. Results & Discussion

This chapter is devoted to the results and contains a detailed discussion of the exper-
imental tasks outlined in the previous chapter. To fully characterize the action of our
CSIGN-gate, various measurements have been performed. I will start with the results for
the so-called “truth table”, a very simple measure, followed by single and two-qubit state
tomography, which finally allows us to reconstruct the process matrix of our gate by
means of process tomography, the most complete method for characterizing the action of
a quantum gate.

5.1. CNOT Truth Table

The simplest characterization of a two-qubit gate is based on its “truth table”. It is
obtained by measuring the output states for every possible input state within a single
basis. It provides a quick estimate whether the gate is working properly, although it is
far from a comprehensive measure for the performance of a gate. Since the input states
are qubits, they can also exist in arbitrary complex superpositions of the classical bit.
Superposition states and thus the entangling properties of the CNOT-gate, however, may
not be reflected by simply looking at its truth table.
Nevertheless, due to the simplicity of the measurement, we recorded a truth table for
our gate operated as a CNOT. This can be achieved by inserting extra HWPs (at 22.5◦)
which perform Hadamard operations on the target qubits before and after the CSIGN-gate
(input 2 in Fig. 3.2). A schematic depiction of the extension of our CSIGN-gate to a
CNOT-gate can be seen in Fig. 5.1. The Hadamard operation was actually implemented
using the preparation and analyzer waveplates, so physically, no additional waveplate was
employed. Due to the architecture of the gate, only the horizontally polarized photons
are able to interfere with each other and are therefore denoted as logic 1 state for the
control mode (CH) and logic 0 for the target mode (TH). So the logic value compared to
the polarization of the photons for the truth table read like: Control bit → |0〉 = |V 〉,
|1〉 = |H〉; Target bit → |0〉 = |H〉, |1〉 = |V 〉.

The actual recorded truth table in terms of measured coincidence counts can be
seen in Table 5.1. For the parts of the table that do not require any interference (control
bit in logic 0), the so-called “transfer fidelity” is almost perfect (99%), while for the
critical parts of the CNOT operation (control bit in logic 1) that relies on the non-classical
interference, the transfer fidelity decreases to 75 and 79%, respectively. A graphical
representation of the truth table can be seen in Fig. 5.2, with the population of the
matrix elements denoting the transfer probability. While for a ideal CNOT gate this is
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Figure 5.1.: Left: Schematic representation of the CSIGN-gate in the dual rail depiction and its
extension to a CNOT-gate by applying Hadamard gates (HWPs at 22.5◦) on the target qubit on
either side of the gate.
Right: Experimental realization, where we do not show the preparation and analyzer waveplates.

straightforward, it is more complex to calculate the “optimal” CNOT truth table for the
actual beamsplitter reflectivities. This has been done analogous to Section 2.3.1, but
leaving the respective beamsplitter reflectivities as variables, so one arrives at the actual
CSIGN matrix

CSIGNopt =




√
η2η3 0 0 0
0

√
η1η3 0 0

0 0
√

η1η2 0
0 0 0 2η1 − 1


 . (5.1)

By applying an Hadamard gate to the target qubit before and after the gate (Eq. 1.25),
one can easily transform this into the appropriate CNOT matrix,

(I ⊗H) · CSIGNopt · (I ⊗H) = CNOTopt, (5.2)

and when inserting the actual reflectivities, which were measured to be η1 = 0.28, η2 = 0.28
and η3 = 0.295, one arrives at the following optimal CNOT truth table for our gate:

Mopt =




1 0 0 0
0 1 0 0
0 0 0.047 0.953
0 0 0.953 0.047


 , (5.3)

where the individual entries of the truth table are calculated as M
(jk)
opt = 〈k|CNOTopt|j〉,

with (j, k ∈ {00, 01, 10, 11}). The optimal truth table together with the ideal and mea-
sured truth table is shown in Fig. 5.2. From this matrices, one can calculate the so-called
“Inquisition” [34], which is the average of the logical basis fidelities.
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5.1. CNOT Truth Table

IN ↓ OUT→ |00〉 |01〉 |10〉 |11〉 %

|00〉 299 0 1 1 99± 6
|01〉 2 278 2 0 99± 6
|10〉 1 4 129 514 79± 4
|11〉 3 1 492 161 75± 5

Table 5.1.: Experimentally measured truth table for the CNOT-gate. The furthest right column
gives the “transfer fidelity” for every given input state. If the input control bit is in the logical |1〉
state, the target bit gets flipped in 75 and 79% of the cases. The coincidence counts were recorded
for an integration time of 20 seconds and the background is already subtracted. The error has
been calculated by propagating Poissonian count statistics.
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Figure 5.2.: Left: Ideal truth table for a CNOT-gate, where the whole population of the |10〉 and
|11〉 input gets transferred in the |01〉 and |10〉 mode, respectively.
Middle: Best possible, or “optimal” truth table for our CNOT-gate, where due to the imperfect
PPBS splitting ratios, only 95.3% of the |10〉 and |11〉 inputs can get transferred in a perfectly
aligned setup.
Right: The actually measured truth table for our CNOT-gate. If the input control bit is in the
logical |1〉 state, the target bit gets flipped in 75 and 79% of the cases. Compared to the best
achievable case (middle figure, 95.3%), this is in excess of 90% relative inquisition in between
the optimal and measured CNOT truth table.

The inquisition is defined as I = tr(Mexp ·MT
ideal)/4 for the ideal case, where Mexp denotes

the measured truth table. This changes to the general expression
I = tr(Mexp ·MT

opt)/tr(Mopt ·MT
opt) if one wants to calculate the overlap between the opti-

mal and the experimentally measured truth table. While the inquisition of the measured
data with the ideal CNOT-gate truth table is only 87.9%, this value is increased up to
90.6% when taking into account the imperfect beamsplitter reflectivities. Theoretically,
a inquisition of 97.7% compared to the ideal is possible with the imperfect beamsplitter
reflectivities.
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OUT ↓ IN→ |HH〉 |HV 〉 |V H〉 |V V 〉
|H〉 681 155 4 0
|V 〉 3 1 150 155
|D〉 343 77 75 68
|A〉 352 80 77 71
|R〉 371 76 76 70
|L〉 339 71 65 72

Table 5.2.: Count rates for the single qubit tomography of the first input photon, performed with
PDC photons and 10 sec integration time. As expected, the state of the photon is well polarized,
with the superposition state measurements |D〉, |A〉, |R〉, and |L〉 showing balanced count rates
within Poisson distributed fluctuations. The increased count rates for the |HH〉 input is due to
the setting of the HWP in between the PPBSs (set to 0◦, therefore strongly attenuating vertically
polarized photons).

5.2. Single-Qubit Tomography

State tomography, as has been explained before, is the process of reconstructing the quan-
tum state of a system using a finite set of measurements. In our case, where the qubits are
encoded in the polarization state of the photons, this simply reduces to a measurement
of the polarization state. Even more straightforward, in the case of a single qubit, tomog-
raphy is equivalent to measuring the polarization state of the photon via the four Stokes’
parameters, which practically correspond to measurements in the H, V, D and R basis [32].

In our experiment, we performed single-qubit tomography for both input photons.
This allowed us to check whether the gate induces some sort of polarization rotation
from misaligned or incorrectly calibrated waveplates or beamsplitters. It also served
as a first test for our LabView routine which automates the measurement procedure.
When removing the polarizer (PBS) in front of the detector in the optical path not
under consideration, the detector in that arm basically records every incident photon,
regardless of its polarization, and we therefore expect the light to be strongly polarized.
Additionally, by removing the polarizer, only coincidence post-selected photons are
recorded, reducing the experimental counting errors due to noise and/or dark counts.
The single-qubit tomography has been performed for all permutations of H and V as
input states, i.e. |HH〉, |HV 〉, |V H〉, |V V 〉. The results1 can be seen in Table 5.2 and are
within the expected error bars given by the Poisson statistics. As can be inferred from
the data, the light is well polarized, with calculated fidelity and purity tr(ρ2) of almost 1.
A similar result has been obtained for the other optical beam path (second qubit), which

1Since the LabView routine performs 36 measurements, corresponding to all possible permutations of |H〉,
|V 〉, |D〉, |A〉, |R〉 and |L〉, we manually added and normalized the actual recorded count rates for a given
state. For example, for the |H〉 measurement of the first qubit, this means adding up the |HH〉, |HV 〉,
|HD〉, |HA〉, |HR〉 and |HL〉 contributions from the tomography (due to the missing analyzing polarizer
in the other optical beam path).
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5.3. Two-Qubit State Tomography

HH

HV

VH

VV

HH

HV

VH

VV

−0.5

0

0.5

1

HH

HV

VH

VV

−0.5

0

5

HH

HV

VH

VV

HH

HV

VH

VV

−0.5

0

0.5

1

HH

HV

VH

VV

−0.5

0

5

Figure 5.3.: Reconstructed density matrix from state tomography for |V V 〉 input. The left graph
represents the real part of the matrix while the right graph shows the imaginary part. Fidelity,
purity, linear entropy and tangle of the reconstructed state are shown in Table 5.3.

Table 5.3.: State Tomography Parameters

Parameter |V V 〉-Input |DD〉-Input

Fidelity 0.973± 1·10−15 0.77± 0.01
Purity 0.949± 0.003 0.74± 0.01
Lin. Entropy 0.067± 0.004 0.36± 0.02
Tangle (3.6± 3.4)·10−6 0.46± 0.03

demonstrates not only a working LabView routine and a proper alignment of the setup
but also served as a controlled test before we finally perform quantum state and process
tomography on our gate.

5.3. Two-Qubit State Tomography

Similar to the single-photon case, two-qubit state tomography is the measurement of
the joint polarization state of a pair of photons. As outlined in detail in Section 2.4.1,
this involves a series of at least 16 measurements, since the two-qubit Hilbert space is
a four-dimensional space. We opted to perform “overcomplete” state tomography, using
36 instead of only 16 measurements for every one of the 16 input states, as explained in
Section 4.2. Some of the results of the state tomography can be seen in Fig. 5.3 and 5.4,
together with their respective parameters in Table 5.3. Those results have been chosen
for publication here because they demonstrate very clearly the characteristics of our
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Figure 5.4.: Reconstructed density matrix from state tomography for |DD〉 input. The left graph
represents the real part of the matrix while the right graph shows the imaginary part. Fidelity,
purity, linear entropy and tangle of the reconstructed state can be inferred from Table 5.3. As
expected, the |DD〉 input results in an entangled output state of the form |HD〉+ |V A〉, which,
after local unitary transformations (I ⊗ H) is equal to the better known Bell-State |Φ+〉 =
1√
2
(|HH〉+ |V V 〉).

CSIGN-gate for the specific input states. For vertically polarized input states, |V V 〉, the
gate performs no transformation of the state, simply because the two photons do not
interfere at the central PPBS, so one expects the output state to be of the form |V V 〉 as
well. This can be seen in Fig. 5.3 and Table 5.3. Purity2 and tangle of the joint state are
0.949± 0.003 and effectively zero, respectively, indicating an unentangled and strongly
polarized two-qubit state. The linear entropy is a measure for the mixture of a state and
closely related to the purity (Eq. 1.16). All in all, the reconstructed density matrix shows
a strongly vertically polarized output state of very high fidelity and no entanglement, as
expected from theory (Section 1.2.2).

A more interesting input is the |DD〉 state, since we expect the gate to transform
this input into a maximally entangled state, as desired for Bell-, GHZ- and cluster state
preparation (Section 1.2.2 and 1.3.3). The reconstructed density matrix for the |DD〉
input is shown in Fig. 5.4 and the tangle has been calculated to be 0.46± 0.03, which
demonstrates the entangling action of our gate, albeit the entangled state is somewhat
mixed with a linear entropy of 0.36± 0.02. Unfortunately, the tangle is a very sensitive
measure and to obtain a high figure, the quality of the optical setup (i.e. quality of

2The error has been calculated by performing a 100 run Monte-Carlo simulation of the state tomography,
with Poissonian noise added to the count statistics in each run.
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the mode match and optics elements) has to be extremely high. Apparently, since our
crucial PPBSs fail to have this quality, the rather low tangle is not surprising and a more
detailed discussion of this will follow at the end of this section. Nevertheless, the output
state is sufficiently entangled to violate a Bell-inequality, with a maximum possible
Bell-parameter [21] of S = 2.39± 0.02, which is an encouraging result.

5.4. Process Tomography

To determine the action of our quantum gate we have to perform quantum process
tomography, since state tomography only reconstructs the output state for a given input
state, but doesn’t allow one to predict the output state for any arbitrary input state,
mixed or pure (Section 2.4.2).

Fortunately, the same set of data which was taken for the state tomography can
readily be used to perform quantum process tomography. Since the usual approach, in
some cases, gives unphysical process matrices, a new convex optimization method [36]
has been developed, which can be thought of a constrained least-squares optimization
that is similar to the maximum-likelihood estimation in QST [33]. Data evaluation
was performed on a MatLab routine employing this new technique, and a graphical
representation of the reconstructed process or χ-matrix in the Pauli basis can be seen
in Fig. 5.5. An ideal CSIGN-gate can be written as a coherent sum of tensor products
of Pauli operators acting on the control and target qubit respectively, leading to
UCSIGN = 1

2
(I ⊗ I + I ⊗ Z + Z ⊗ I − Z ⊗ Z). The process matrix in Fig. 5.5 shows the

populations and coherences between these Pauli operators which represent the action
of the gate, where the sign of the coherences are related to the signs of the terms in
UCSIGN . One should keep in mind, that, due to the architecture of our gate, a bit flip
is applied onto every qubit because of the HWPs between the PPBSs, which flip the
polarization of every photon. This fact can be easily accounted for by applying the bit
flip, (X⊗X)UCSIGN(X⊗X) = 1

2
(I⊗ I− I⊗Z−Z⊗ I−Z⊗Z), onto the Pauli operator

representation, which then yields the correct basis for the process matrices shown in
Fig. 5.5.

Given these results, we want to compare the experimentally obtained process matrix
relative to the ideal matrix χCSIGN , which is the process matrix for UCSIGN [34].
The process fidelity3 FP = tr(χCSIGNχexp) between our measured and ideal CSIGN

χ-matrix was calculated to be 0.77± 0.1. The error was estimated by performing a
1,000 run Monte-Carlo simulation of the whole process tomography, with Poissonian
noise added to the count statistics in each run. Unfortunately, to date, there exists no
other, more straightforward technique to calculate the error bars. In Fig. 5.5 it is clear
that the major deviation from ideal operation is the larger than expected II term (0.31
compared to 0.25 in the ideal case). This arises from imperfect mode matching at the

3A graphical representation of FP can be obtained by acting UCSIGN on all the Pauli basis elements
(therefore expressing it in the CSIGN basis). In that case, FP is the height of the corner element II.
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Figure 5.5.: The real part of the ideal (top) and measured (bottom) χ-matrix for the CSIGN-gate
in the basis defined by tensor products of Pauli operators. The colour denotes the population of
the matrix elements. The imaginary components of the experimental matrix are not shown: a
few populations are on the order of 0.05, the majority is ∼0.005.

central PPBS, resulting in imperfect nonclassical interference, i.e., the control and tar-
get qubits do not see each other and are simply transmitted through the circuit unchanged.
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5.5. Discussion

An alternative approach to the process fidelity is to calculate the average gate fi-
delity, i.e. the average overlap of the predicted output states with the measured output
states (from the individual state tomography results), which is the average of the usual

state fidelity defined as F (ρ, σ) = (tr
√√

σρ
√

σ)2, where ρ, σ are the density matrices
under consideration. This measure gives an overlap of 0.82± 0.1 for our gate. However,
our experimental set-up systematically induces fixed rotations of the input and output
polarizations4. For practical application of this gate, these rotations have no detrimental
effect because they can be measured and compensated for by appropriate single-qubit
rotations. By numerically modeling these local single-qubit unitary operations on both
control and target input and outputs we could increase the process fidelity to 0.80± 0.2
and the average gate fidelity to 0.84± 0.1. This represents the optimum fidelity that
can be achieved with our CSIGN-gate. The fact that the fidelity is still less than 1 is
most likely due to the non-ideal PPBSs reflectivity and the imperfect mode matching
(spatial as well as temporal) at the central beamsplitter. This also leads to an imperfect
“process purity”, which reflects the effects of decoherence on the gate. The process
purity is defined as the purity of all output states averaged over all pure inputs,
tr(ρ2) =

[
d · tr(χ2

exp) + 1]/(d + 1)
]

= 0.74 ± 0.1 (d is the dimension of the Hilbert space,
hence 4 in our case). This is equivalent to an average normalized linear entropy of
0.35± 0.1, which is a measure for how much mixture the gate introduces.

5.5. Discussion

As one can judge by the results of the state and process tomography, the CSIGN-gate
shows the right characteristics. It is capable of entangling previously unentangled photons
and the process matrix shows a qualitative resemblance with the ideal CSIGN-gate. Still,
the calculated properties like the gate fidelity are imperfect. Since we know that our
PPBS splitting ratios are not perfect, we raise the question how well the gate can possibly
perform with these beamsplitter reflectivities, not considering other potential imperfect
experimental conditions like mode-mismatch and inherent noise in the optical setup. To
investigate this question, one can try to model the gate with the actual beamsplitter
reflectivities and, ideally, calculate the “optimal” χ-matrix for this gate and compare it to
the experimentally-reconstructed process matrix. This has been done by Alexei Gilchrist,
who simulated count rates for the CSIGN circuit with the actual PPBS reflectivities and
performing process tomography, eventually resulting in an “optimal” χ-matrix that yields
a maximum achievable process fidelity of Fp=0.957, which corresponds to an average
gate fidelity5 of 0.965.
An alternate method to obtain an estimation of the optimal performance of the CSIGN-gate
with the wrong PPBS splitting ratios is to calculate, and average over, the transfer fidelities
for all possible input states. This is equivalent to the average gate fidelity described above
and in our case we define the transfer fidelity as the overlap between the ideal and “real”

4This is most likely due to birefringent effects in the non-ideal PPBSs.
5Favg = d·Fp+1

d+1 , where d is the dimension of the Hilbert space, hence 4 in our case.
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Figure 5.6.: The “average gate fidelity” |〈Ψideal|Ψreal〉|2 as a function of the general beamsplit-
ter reflectivity η. As expected from theory, for η=1/3, the fidelity is 1. For our gate, the actual
(average) beamsplitter reflectivity of η=0.285 gives an optimum average gate fidelity of 0.97.

output states of the gate, hence Favg = |〈Ψideal|Ψreal〉|2, with |Ψideal〉 = CSIGN |Ψin〉 and
|Ψreal〉 = CSIGNreal|Ψin〉 and the “real” CSIGN matrix is that of Eq. 5.1. One can then
infer the average gate fidelity by calculating the transfer fidelity for all possible input
states |Ψin〉, where |Ψin〉 = (a + ib)|HH〉+ (c + id)|HV 〉+ (e + if)|V H〉+ (g + ih)|V V 〉,
which allows for mixed, pure and entangled input states. By repeatedly assigning normal
distributed random values6 to the parameters a-h and averaging over the results, one
obtains the expected average gate fidelity. This simulates the gate performance for all
possible input states. The calculation has been carried out on Mathematica 5.0 and the
result is plotted in Fig. 5.6, with the average gate fidelity being a function of the general
beamsplitter reflectivity η. Following this approach we obtain an estimated optimum
fidelity of about 0.97, better than originally expected, but in good agreement with the
results of Alexei Gilchrist’s circuit simulation7.

Initially, we expected the wrong PPBS splitting ratio to be the main reason for
the imperfect data. However, the results presented above suggests otherwise. Apart from
the reflectivities of the beamsplitters, imperfect mode matching can be blamed for the
non-ideal performance of the gate. Mode matching could, in principle, be improved with
narrower spectral bandwidth filters and by ensuring better spatial as well as temporal
overlap of the input photons at the central PPBS. The quality of the mode matching
can be inferred by the interference visibility, i.e. the depth of the HOM Dip, which was
in excess of 90 % relative visibility (see Section 4.1.3). This can hardly be improved as

6In order to draw input states uniformly over the so-called Haar measure [39], we chose a normal distri-
bution in Mathematica 5.0, with the mean equal to 0 and a standard deviation of 1.

7A more complete calculation considering the individual beamsplitter reflectivities has also been performed,
yielding a result for the average gate fidelity of 0.969, essentially the same result as presented here.
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5.5. Discussion

it already presents a rather high figure compared to previous experiments, although we
believe that during the (long) course of the tomography experiment the quality of the
mode matching might have been declining due to sagging of the fiber couplers. Another
possible explanation for the imperfect tomography data could be non-ideal waveplates,
either slightly mis-aligned so that they cause beam-steering issues or not set correctly at
the right angle (which can only be done to within ±5 degree-minutes) as well as unusual
phase-shifts occurring upon reflection of optical elements.
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6. Problems & Possible Solutions

As every avid experimentalist knows, things tend to go wrong. This experiment is by
far no exception from this tendency, but instead of whining and complaining, one has to
tackle the obstacles encountered in the best way possible. Throughout the experiment we
have been struggling with low coincidence count rates, so this section is mainly dedicated
to the PDC-source and gives suggestion of how to improve its efficiency.

6.1. Adding in that 3rd Photon

To be able to create a 3-photon cluster state, we obviously have to incorporate a third
photon, a weak coherent state in our case, into the optical setup. While coupling and
aligning the coherent state, which is the remaining unconverted fundamental from the
up-conversion process (see Section 3.2), in principle does not present major difficulties,
matching the count rates of the PDC source and the coherent state would lead to unfeasible
low 3-fold coincidence rates at the present time. Ideally, one only wants 3-fold coincidence
contributions from 2 PDC photons and 1 coherent photon (i.e. “PCC · P1C”). However,
the leading order background comes from the events where 2 coherent and 1 single PDC
photon are detected after the gate (P2C ·P1S), so simply increasing the coherent state count
rate to ensure high 3-fold probability is not enough. Since the probability for a coherent
state containing two photons scales with the intensity squared P2C ∝ I2, we have to keep
the intensity of the coherent beam low enough to ensure a moderate and low background.
This investigation shows that the probability1 for a coherent state containing one photon,
P1C ∼ |α|2, has to be much smaller than the so-called down-conversion-efficiency ε,

P1S =
PCC

ε
, P2C =

P 2
1C

2
P1S · P2C ¿ PCC · P1C

|α|2 ¿ ε (6.1)

where ε = CC
S

, with CC and S are the measured coincidence and singles count rates after
the gate, respectively.

Having said that, if one wants to achieve reasonable 3-fold count rates for the cre-
ation of the 3-photon cluster state, one has to improve the currently low rate of
coincidences of our down-conversion source, which stands at a mere 300 s−1 (ε ≈ 0.025)

1Remember that a coherent state is defined as |α〉c ∝ |0〉+α|1〉+ α2√
2
|2〉+ · · · , where |α|2 is the probability

of the state containing one and only one photon.
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6. Problems & Possible Solutions

after the gate. This figure has to be improved significantly to allow further progress
of the experiment. Based on former experiments, it should in principle be possible to
achieve ε = 0.1 with an improvement by a factor of 10 from the current value being the
minimum. The next section will tackle this task and we will give some suggestions of how
to upgrade the source therein.

6.2. Coincidence Rate Improvement

Different ways to improve the efficiency of a down-conversion source exist and it is in fact
not straightforward to choose the appropriate one. However, in the following, I will try
to briefly discuss the various approaches.

In order to obtain a decent down-conversion efficiency in the first place, one has
to ensure a proper up-conversion at the SHG-crystal to achieve intensities as high
as possible for the subsequent down-conversion process. Unfortunately, due to pulse
broadening, the crystal length has to be kept below 2 mm to achieve sufficiently short
pulses, so increasing the length of the doubling crystal beyond that value (and hence
increasing the up-conversion probability) is not preferred. As a next step, different lenses
with different focal lengths can be employed to focus the pump pulse onto the crystal.
In theory, the Rayleigh length should be no shorter than the crystal length, but it
certainly helps to test lenses in the region of f=25-50mm for optimal focusing. However,
there is a trade-off between the “acceptance-angle” within which down-conversion in the
crystal occurs and optimal focusing to achieve high beam intensities (and therefore a
high conversion probability). In principle, the tighter the focus, the larger the divergence
angle, which under extreme circumstances can result in a worse up-conversion-efficiency
because only parts of the beam satisfy the phase matching conditions.

Another possible solution is the use of higher quality lenses, so-called achromats,
which are in fact a combination of multiple lenses and therefore do not lead to chromatic
and spatial abberation effects, allowing for a better focus. In order to collimate the beam
properly after the SHG-crystal, a combination of two cylindrical lenses could be employed
to ensure a circular beam shape with Gaussian intensity distribution, which could be
inspected and verified in-vivo with the help of the CCD camera.

Additionally, the fast prisms currently used to spatially separate the second har-
monic from the fundamental frequency might also introduce the effect of temporally
delaying the various pump pulse frequencies differently, therefore leading to pulse
broadening. By utilizing a combination of multiple dichroic mirrors it should be possible
to circumvent this problem.

During the alignment of the pump source we have also come aware of the follow-
ing problem: Since the SHG-crystal is cut such that the incident pump beam has to be
perpendicular to its surface for optimal phase matching, back reflection from the crystal
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6.2. Coincidence Rate Improvement

front face travels back into the laser cavity and forces the Tsunami Ti:Sapphire to jump
out of its mode-lock operation whenever one tries to achieve better phase matching by
tilting the crystal. To avoid this problem, SHG-crystals which are cut to an angle 5◦

of the ideal have been ordered, so that for perfect phase-matching conditions, the back
reflected light will not be back-coupled into the laser cavity. Trials with such crystals
already yielded conversion efficiencies of more than 40%, a significant improvement over
the current value of 26 %.

Last but not least, mode-matching calculations and expertise show that improved
fiber coupling can be expected by rigorously shortening the arm lengths in between the
fiber couplers and the PDC-crystal, so that no additional lenses have to be employed to
focus the beam onto the fiber core, as currently done. Additionally, a new set of different
fiber couplers have been ordered which are better mounted and less prone to long term
drag and temperature fluctuations within the laboratory. In a last incentive, the single
mode fibers will be extended to pieces of 2x2m in each arm, which allows to shine a
visible laser light back through the fiber coupler onto the crystal, which then in turn
enures easy, quick and proper alignment of the fiber couplers.
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7. Outlook

Once the down-conversion source has been improved, a range of possible experiments have
been suggested, most notably the generation of a 3-photon cluster state. While the gate
architecture therefore is already set up, a slight modification and an upgrade to a 4-photon
source would enable fascinating new experiments such as an implementation of Shor’s
algorithm or the possibility to perform feed-forward quantum computation (quantum
control).

7.1. 3-Photon CSIGN-gate

As we have already seen theoretically in Section 2.3, it is possible to concatenate the
basic CSIGN-gate to create a 3-photon cluster state. Even more interestingly, the unique
scheme first suggested by Ralph [14] can be potentially scaled up to create a N-photon
cluster state by concatenating (N-1) CSIGN-gates. Experimentally, this “upgrade” can be
achieved by adding another PPBS1 with the same reflectivity to the network for each
additional photon, as depicted in Fig. 7.1. For every other photon, only two HWP, one
QWP and one PPBS have to be added to the previous gate, which is one of the main
advantages of this scheme2.

For three photons, this has already been setup in the lab, and once path length
matching and mode matching at the second PPBS has been achieved, the gate could be
operational. To characterize its performance however, a 3-fold coincidence logic has to
be installed, either by ordering programmable coincidence logic (Xilinx) or by simply
concatenating two ordinary TAC-SCA’s, where the coincidence output of the first logic
serves as a input signal for the second TAC-SCA, together with the signal for of the third
photon. In addition, the current program for the automated state tomography would
need to be adapted and expanded to incorporate the third photon, before the 3-photon
CSIGN-gate can be characterized in the same way as has been done for the basic 2-photon
CSIGN-gate. If successful, this would be the first generation of three-photon entanglement
from previously unentangled photons.

1This extra PPBS actually just serves the fact to balance the amplitudes for the additional qubit, so no
non-classical interference is required there.

2One HWP and QWP are used for input state preparation. One HWP, set to swap the polarization, and
the extra PPBS are required to balance the gate’s output amplitudes.
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Figure 7.1.: Extension of the basic CSIGN-gate architecture to produce 3-photon cluster states.
Potentially, a N-photon cluster state can be created by adding the repeat unit to the previous
gate for each extra photon. The repeat unit consists of one PPBS, two half-waveplates, one
quarter-waveplate and one detector.

7.1.1. Test of Svetlichny’s Inequality

Svetlichny has developed a Bell like inequality which allows to distinguish between genuine
three-particle non-locality and two-particle non-locality with a separable third particle
[40]. Adapted to linear optics by Mitchell et al. [41], it has so far not been successfully
implemented or tested, mainly due to the fact that a violation of this inequality requires
a high level of three-particle entanglement. However, once the 3-photon CSIGN-gate is
characterized and optimized past the required critical fidelity, the test of Svetlichny’s
inequality is very straightforward as the measurements can be performed analogous to
the measurements for the state tomography3.

7.2. 4-Photon Source

Ultimately, in order to perform more interesting quantum computing experiments such as
implementing Shor’s algorithm or quantum control schemes, the current photon source has
to be upgraded to generate four photons. Since the scale up probability is not favorable for
the case of adding two coherent states to the PDC-source, eventually, the four photons have
to be emitted by two PDC-events. Basically, two different methods for collection of these

3Only the waveplates would have to be set to the appropriate angles to conduct the experiment.
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photons can be employed. One can either collect one mode as done in our experiment and
wait for two PDC events to happen at the same instance (so-called “double pair emission”),
or alternatively, collect two different modes (four spots on the opening cone) which is not
possible with the current collapsed cone operation. The disadvantage of the first scheme
is that the double pairs are obviously emitted into the same mode (2x2 photons), so
one has to employ 50/50 beamsplitters to probabilistically separate them into 4 distinct
modes, losing 75 % of the 4-photon events on the way. Since the probability for 4-photon
generation is the same in both cases, it is more favorable to collect two different modes,
although certainly more challenging to achieve experimentally. However, other research
groups have achieved 4-photon count rates as high as 1 s−1 utilizing the latter scheme.

7.2.1. Implementation of Shor’s Algorithm

One of the prime goals of experimental quantum computation is the implementation of
Shor’s Algorithm [5]. Its ability to find the prime factors of an (large) integer in only a
fraction of the time of a classical computer is very fascinating. Concatenating two CNOT-
gates and using four photons it might be feasible to demonstrate the algorithm, although
only a restricted set of problems could be solved with it [42]. This can be done by extending
our current scheme to 4 photons and although the experimental realization is probably
months away, it deserves to be mentioned here.

7.2.2. Quantum Control

Another very fascinating and currently emerging topic in the field of linear optics quantum
computation is quantum control, which involves the already mentioned feed-forward. By
utilizing , e.g. fast switching Pockels-cells, one can manipulate (i.e. rotate the polarization
of) one or more photon(s) upon the result of a previous measurement of another photon.
This makes the implementation of more sophisticated algorithms possible and eventually
allows for deterministic quantum computing. A preliminary characterization of a fast
feed-forward system is already underway in our laboratory.

63



7. Outlook

64



8. Further Investigation

8.1. Motivation

In summary up to now, we have proposed and experimentally demonstrated a new archi-
tecture for an entangling optical gate. The key advantage of this new gate architecture is its
simplicity and suitability for scaling since it requires only one nonclassical mode matching
condition, and no classical interferometers. The performance of this gate is limited almost
exclusively by mode matching, primarily spatial, making this gate a very promising candi-
date for micro-optic and integrated-fiber-optic implementations, where non-classical mode
matching in excess of 99% can be expected [43]. Due to the less stringent (spatial) mode
matching requirements in fiber optics, improved versions of these gates can, in principle,
be expected within the next few years.
One of the last remaining problems will then be the temporal mode matching at the central
PPBS, since good spectral mode matching is guaranteed by employing narrow bandwidth
filters and the state of polarization can be very easily and accurately manipulated inside
optical fibers.1

The importance of temporal mode matching is by far not constrained to this particu-
lar experiment. Indeed it does presents a major challenge in almost every “real world”
application of quantum communication (QC) protocols which require the experimental
implementation of a so-called Bell-state measurement (BSM). This BSM was first sug-
gested in Ref. [48] and subsequently realized by Mattle et al. [50] in a quantum dense
coding experiment. Quantum teleportation [45, 52] and eventually a quantum repeater
[47, 46, 49] furthermore rely on this specific measurement as will be discussed below.
Driven by the curiosity whether quantum repeaters can ever be implemented on a world
wide scale (i.e. outside the perfect laboratory environment) and whether the performance
of our CSIGN-gate will be limited by imperfect temporal mode matching, we have set up
an experiment at the University of Vienna to study the performance of quantum tele-
portation dependent on the quality of the temporal mode (mis-)match. As a measure
for the performance we examine the fidelity of the teleported state which itself depends
on the temporal overlap of the photons and their general indistinguishability on a linear
optics element, i.e., a beamsplitter. The mode matching is experimentally limited in “real
world” long distance QC schemes due to polarization drifts and fluctuations in the length
of optical fibers.

1Very interestingly, in a recent publication [44], it has been shown that mode-mismatch that occurs in
multiple degrees of freedom is completely equivalent to mode-mismatch in a single degree of freedom (e.g.
temporal).
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8. Further Investigation

8.2. Quantum Teleportation

In 1993 Bennett, Brassard, Crépeau, Jozsa, Peres and Wooters [45] came up with a
quantum teleportation scheme that is illustrated in Fig. 8.1.

The basic idea in quantum teleportation is the following: Suppose we have two
parties, Alice and Bob. Say Alice wishes to transfer a certain quantum particle (a qubit,
as in Eq. 1.1) to Bob, but cannot do so directly. According to the rules of quantum
mechanics if she measured the qubit this action would destroy the quantum state of the
particle without revealing her all the necessary information which she could then send to
Bob to reconstruct the qubit. Still, if Alice would manage to have many identical copies
of her particle to be teleported, she could, at least in principle, measure each of them and
so, asymptotically, extract all the necessary information. Unfortunately, it is impossible
to copy a unknown quantum state due to the so-called No-cloning theorem [51] that we
will shortly describe in the following.

The No-cloning theorem

Very interestingly, as it will turn out, it is impossible to copy an unknown quantum state.
Suppose we have a quantum copier with two slots labeled A and B, the data slot and the
output slot, respectively. We start out by feeding the unknown but pure quantum state |Ψ〉
into the data slot, and we assume that the output slot is some standard2 pure state |p〉,
so that the initial state of the copier can be written as |Ψ〉 ⊗ |p〉. The copying procedure
can be represented as some unitary evolution U , ideally,

|Ψ〉 ⊗ |p〉 U−→ U(|Ψ〉 ⊗ |p〉) = |Ψ〉 ⊗ |Ψ〉. (8.1)

Suppose now we want to copy two particular pure states, |Ψ〉 and |Φ〉. Then the output
of the copier should read like:

U(|Ψ〉 ⊗ |p〉) = |Ψ〉 ⊗ |Ψ〉
U(|Φ〉 ⊗ |p〉) = |Φ〉 ⊗ |Φ〉 (8.2)

Since this copying procedure is represented by an unitary transformation, it must preserve
the inner product,

(〈Ψ|Φ〉)⊗p = 〈Ψ⊗p|Φ⊗p〉 U−→ U(〈Ψ⊗p|Φ⊗p〉) = 〈Ψ⊗Ψ|Φ⊗Φ〉 = 〈Ψ|Φ〉〈Ψ|Φ〉, (8.3)

so that we require,
〈Ψ|Φ〉 = (〈Ψ|Φ〉)2. (8.4)

But this equation, x = x2 has only two possible solution, x = 0 and x = 1, so either
|Ψ〉 = |Φ〉 or |Ψ〉 and |Φ〉 are orthogonal. Therefore the cloning apparatus can only clone
or copy states which are orthogonal to one another! A quantum copier cannot, for example,

2much like blank paper sheets in a usual copier.
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Figure 8.1.: Principle teleportation scheme of Bennett et al. [45]. According to the result of the
Bell-state measurement (BSM), Bob performs a unitary transformation U to obtain the state of
the initial particle/photon. More detailed discussion can be found in the text.

copy the qubit states |Ψ〉 = 0 and |Φ〉 = 1/
√

2, since these states are not orthogonal and
we have indeed shown that it is impossible to perfectly clone an unknown quantum state
using unitary evolution. A more detailed and formal proof of this fact can be found in
[51].

8.2.1. The Teleportation Protocol

But let us for now return to Alice and Bob and the question how Alice can provide Bob
with her quantum particle. The solution is once again entanglement. By sharing a pair
of entangled particles (EPR pair), Alice can teleport the unknown quantum state of her
particle to Bob. The scheme of Bennett et al. [45] is applicable to all sorts of physical
systems and degrees of freedom (i.e. arbitrary large Hilbert spaces), but we will from now
on only consider two dimensional systems where the qubits are encoded in the polarization
states of photons (i.e. H and V for the logic states 0 and 1).
As mentioned above, Alice and Bob share an entangled pair of particles (photons from

now on), which, for the sake of simplicity, shall be in the singlet state,

|Ψ−〉23 =
1√
2
(|H〉2|V 〉3 − |V 〉2|H〉3), (8.5)

while the photon to be teleported is in an unknown superposition of H and V , |Ψ1〉 =
α|H〉+β|V 〉. Recall from Section 1.1.4, that, as soon as one of the two entangled photons is
measured (i.e. projected onto a certain state), the other photon has to be in the orthogonal
state, independent of the chosen measurement basis.
In order to teleport her quantum bit, Alice now proceeds by performing a so-called Bell-
state measurement (BSM) on photons 1 and 2. Although originally not entangled, the
joint polarization state of photons 1 and 2 can always be expressed in terms of the four
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Bell-states (Eq. 1.8), since these states form a complete orthogonal basis. In total, the
state of the three photons can be written as

|Ψ〉123 = |Ψ〉1 ⊗ |Ψ〉23 =
1

2

[ |Ψ−〉12 · (−α|H〉3 − β|V 〉3) + |Ψ+〉12 · (−α|H〉3 + β|V 〉3)
+ |Φ−〉12 · (β|H〉3 + α|V 〉3) + |Φ+〉12 · (β|H〉3 − α|V 〉3)

]
. (8.6)

Alice will randomly observe one of these 4 Bell-states, and as a result of Alice’s measure-
ment, Bob’s photon 3 will be in one of the four corresponding states (see Eq. 8.6). So for
example, if the result of Alice’s joint measurement is the |Ψ+〉12 state, then Bob’s photon
will be found in the state −α|H〉3+β|V 〉3. If Alice informs Bob on her measurement result
(via a classical communication channel), then Bob can perform an appropriate unitary
transformation U to obtain the initial state of photon 1, the particle to be teleported.
Even more interestingly, if Alice observes the Bell-state |Ψ−〉12, then photon 3 on Bob’s
side is in the state −(α|H〉3 + β|V 〉3), which is, except of an irrelevant global phase shift,
already the initial quantum state of particle 1. The appropriate unitary transformations
to the corresponding Bell-state measurements results are the following:

|Ψ−〉12 −→ I
|Ψ+〉12 −→ σz

|Φ−〉12 −→ σx

|Φ+〉12 −→ i · σy, (8.7)

with σx, σy and σz being single-qubit rotations as introduced in Section 1.2.1. The
teleportation protocol still obeys the No-cloning theorem, since photon 1 loses its
initial quantum state when it becomes entangled to photon 2 during the Bell-state
measurement. If photon 1 itself belongs to an entangled pair, then this eventually leads
to entanglement swapping. Both quantum teleportation and entanglement swapping have
been experimentally realized in the past by various groups [52, 53, 54].

As we have seen in this section, the BSM plays an important role in the telepor-
tation protocol, and indeed, in many other QC protocols such as dense coding and
the quantum repeater. We will therefore now turn our attention to the device that
experimentally performs this measurement, the Bell-state analyzer.

8.2.2. Experimental Bell State Analysis

The very essence of a Bell-state analyzer (BSA) is to perform a Bell-state measurement,
i.e., to project the joint state of two particles onto the Bell basis. Unfortunately, it
has been shown that a complete discrimination of all four Bell-states is not possible
with linear optics alone [55], at least not for polarization encoded photons. Although an
non-deterministic full BSA has been realized experimentally [56], we will only concentrate
on the partial Bell-state analysis employed in this experiment. Note, however, that the
ideal photonic BSA [57] is equivalent to the general CNOT-operation3 required for universal
quantum computing.

3i.e. it can likewise entangle or disentangle qubits.
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Figure 8.2.: Schematic of a Bell-state analyzer for photons. In a) coincidence detection leads
to the discrimination of |Ψ−〉 from the other Bell-states. In b) the schematic of a more complete
Bell-state analyzer is shown. Coincidence between detectors DH and DV ′ or between DH′ and
DV indicates a |Ψ−〉 state, while coincidence between detectors DH and DV or between DH′ and
DV ′ indicates projection onto a |Ψ+〉 state.

In order to perform a successful projection onto the Bell basis, we have to super-
impose the participating photons on a linear optics element. The most commonly used
and by far most basic device therefore is the beamsplitter, which has been discussed in
more detail in Section 2.2. As we have seen, the beamsplitter acts as a Hadamard gate on
the photons, so that, if the two particles are indistinguishable with respect to all degrees
of freedom, the photons will always exit together due to their bosonic nature (photon
bunching, see Fig. 2.6). This is because for photons, the total state, which is comprised
of the internal (polarization) state and the external (spatial) state, has to be symmetric4.
Applying this rule to all four Bell-states we find

|Ψ−〉i|Ψ〉a, |Ψ+〉i|Ψ〉s, |Φ−〉i|Ψ〉s, and |Φ+〉i|Ψ〉s, (8.8)

where the index i denotes the internal (Bell) state of the photons, while a and s indicate
asymmetric and symmetric external (i.e. spatial) states. In other words, the antisymmetric
|Ψ−〉 state is the only one case in which the two photons emerge in different output modes
after the beamsplitter and can therefore be detected by a coincidence measurement5. Ap-
plying this to the standard teleportation scheme above we immediately see that whenever
we detect two spatially separated photons after the beamsplitter (in Fig. 8.2a)), photon 3
on Bob’s side is immediately projected onto the initial state of photon 1 and no unitary
transformation has to be performed by Bob. This has been the case in the Innsbruck
experiment [52], but has the drawback that the teleportation only succeeds one fourth of
the time. In our experiment, we employ the technique of more complete Bell-state analysis

4The total state of the photon is symmetric if and only if both the internal and external states of the
photon are either symmetric or asymmetric.

5One can also argue that the spatially antisymmetric |Ψ−〉 state is an eigenstate of the beamsplitter
(Hadamard) operator, which can be shown by applying the operator on the external (spatial) state.
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[50, 58], which is also the optimal efficiency that can be achieved using linear optics. The
idea is that further distinction of the Bell-states is based on the fact that the two photons
in the |Ψ+〉 state carry opposite polarization in the H/V-Basis. By placing a PBS in each
of the two output modes of a beamsplitter, one can post-select the |Ψ−〉 and |Ψ+〉 states
upon a proper coincidence measurement after the PBS (see Fig. 8.2b)). While coincidence
between detectors DH and DV ′ or between DH′ and DV indicates a |Ψ−〉 state, coincidence
between detectors DH and DV or between DH′ and DV ′ indicates projection onto a |Ψ+〉
state.

70



9. The Teleportation Setup

In this Chapter I give a brief and basic outline of the experimental setup that was used to
study the effect of temporal mode-mismatch on the fidelity of the teleportation protocol.
As I have done in Chapter 3, I will divide the setup into its basic components and address
them in more detail as we go along. In contrast to the previous CSIGN-gate experiment
we now have to deal with 4-photons, whose simultaneous generation and detection re-
quire a more sophisticated experimental setup and additional electronics. A schematic
representation of the setup is shown in Fig. 9.2.

9.1. Laser

As mentioned in the previous section, we are interested in the 2-photon interference be-
haviour of photons impinging on a beamsplitter which can act as a Bell-state analyzer. To
allow for this quantum interference effect, the arrival time of the photons has to be chosen
so that they mutually overlap on the beamsplitter. Therefore the path lengths have to be
equal within their coherence time, which implies that we know the creation time of the
photons. As can be seen in Fig. 9.2, the photons subject to the Bell-state measurement
originate from different entangled pairs. As SPDC is a spontaneous process, we have to
ensure that variations in the creation time of the photons are smaller than their coherence
time. The best way to do so is by limiting the interaction time of the pump laser with
the PDC-crystal (BBO), which can be achieved by pulsing the pump laser1. Choosing the
right pulse length is an important task. Long pulses lead to less tight time correlations
of the photons, however, as the laser pulse length gets shorter, the broader its spectral
bandwidth becomes, eventually resulting in a shorter coherence time2 of the photons and
less pump power per pulse.
In practice, experiments have shown that the ideal trade-off is somewhere between 100-
200 fs, depending on the central wavelength. For our purposes, we employ a mode-locked
Ti:Sapphire laser, named Mira900aBasic, and operate it at a center wavelength3 of 789 nm
(FWHM≈ 7.5 nm) and a pulse length of 150 fs. The Mira900aBasic is pumped by a 10 W,
532 nm solid state laser and produces an average output power of 1.3 W at a repetition rate
of ∼76MHz, which corresponds to a temporal separation of 13 ns in between subsequent
pulses.

1One could, in principle, also use very thin PDC-crystal (on the order of microns) to limit the interaction
time, however, such crystals have inaccurate phase matching conditions, produce low count rates or get
easily damaged by powerful pump lasers.

2The coherence time is defined as the standard deviation of the fourier-transformed light-spectrum,
tc = lc

c =
√

2 ln 2
π

λ2

c4λFWHM
.

3This is due to the fact that single photon detectors show high detection efficiencies at this wavelength, as
will be discussed later.
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9.2. Entanglement Source

Similar to the previous CSIGN-gate experiment, the near-infrared output of the Mira laser
has to be up-converted to half the wavelength in order to allow for parametric down-
conversion of the right wavelength. This is done by focusing with a 40mm lens onto a
nonlinear LBO-crystal (2 mm, lithium borate, LiB3O5), which is cut for type-I collinear
second-harmonic generation (SHG). SHG converts a small fraction4 of the incident light,
resulting in approximately 450mW of 394.5 nm blue light. Due to the birefringence of the
LBO-crystal, the up-converted beam profile is elliptical, which can be accounted for with
the help of two cylindrical lenses, mounted perpendicular to each other. A Gaussian beam
profile is essential for high-efficiency down-conversion [25, 37], and the right geometry of
the pump light at the PDC-crystal can be verified in situ by a CCD-camera [59]. Four
subsequent dichroic mirrors5, placed at 45◦ off normal incidence, separate the remaining
fundamental 789 nm light from the desired UV-light and direct the pump laser onto the
PDC-crystal.
We employ the “railway-cross”-scheme in the same manner as D. Bouwmeester et al. [52],
where the ultraviolet pump is back-reflected after the first passage through the crystal,
to produce entangled photon pairs in forward modes 1 and 2 and backward modes 3 and
4, which are subsequently prepared to be in the |Ψ−〉 state with the help of HWPs and
compensation crystals as discussed in Section 2.1.1 and shown in Fig. 9.2.

9.3. More Complete Bell-State Analyzer

Once the photons are properly prepared by the HWPs and compensation crystals, we select
the desired frequency geometrically with so-called single-mode fiber couplers. The small
numerical aperture6 of a single-mode fiber in combination with an achromatic microscope
lens (f=14 mm) assures that only photons within a small angular distribution emitted
along the vertices of the cones (shown in Fig. 2.1) are accepted by the fiber. The single-
mode fibers only allow propagation of the Gaussian TEM00 mode and therefore serve as
spatial mode filters.
The heart of the more complete Bell-state analyzer is the central 50/50 beamsplitter (see
Fig. 8.2) which is realized as a fiber beamsplitter in our experiment. Fiber beamsplitters
can basically be described as two bare single-mode optical fibers fused together such that
they effectively form a 50/50 beamsplitter, i.e. the optical power is distributed evenly
between the two output modes for every input mode.

4The up-conversion efficiency in our experiment averaged 25-30 %.
5Dichroic mirrors consist of a dielectric layer which, when placed at the right angle, perfectly reflect
UV-light while most of the remaining near-infrared light is transmitted. Due to imperfections of the
mirrors some UV-light will still leak through, which, together with the near-infrared, is used for spectral
measurements and adjustment of the laser system.

6Single-mode fibers at 790 nm have a core diameter of approximately 5µm.
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9.3.1. Prerequisites for Quantum Interference

As already discussed at several points before, quantum interference can only take place
when the participating photons are indistinguishable in every degree of freedom. As in the
CSIGN-gate experiment, we use narrow spectral bandwidth filters (3.2 nm) to select PDC-
photons of equal wavelength and to further stretch their coherence length to approximately
170µm, effectively longer than the pump pulse length. This also renders both entangled
photon pairs indistinguishable in time, which is an important criterion for interfering
photons from independent down-conversion processes, as was pointed out in Ref. [63].
An increase in coherence length is also desired when matching the photon paths to equal
length (see Sections 2.2.1 and 4.1.3). The temporal delay between the photons can be
varied by a delay mirror mounted on a motorized translation stage and its use will be
discussed below. Single-mode fibers offer the benefit that the photons remain in a perfectly
defined spatial mode allowing high-fidelity interference, but one has to take heightened
care to match photons of equal polarizations at the fiber coupler. Since stress-induced
and, in general, randomly distributed birefringence in optical fibers leads to rotations of
the photon’s polarization, one has to compensate for this by using so-called Polarization
Controllers7, which deliberately squeeze and twist the fibers in a controllable way such that
the unwanted rotations can be undone. The PolaRITE-controller implements a tunable
wave plate via an actuator (e.g. screw), which presses the fiber and induces birefringence.
The strength of the birefringence can be controlled by turning the screw in or out, and
the axis of the birefringence is adjusted by rotating the screw mount.

Polarization Compensation

To compensate for any fiber induced polarization distinguishability, we proceed as follows
(see Fig. 9.1). The light of an 788 nm adjustment laser is split up with an additional
fiber beamsplitter, sent through polarizers in each arm and directed to the single mode
fibers, so that the beams recombine at the fiber beamsplitter of the BSA. This way,
we effectively realize a Mach-Zehnder-Interferometer, and due to a Phase Modulator8 in
one arm (see Fig. 9.2), intensity fluctuations of the interfering beams can be observed
and measured with a LabView program. For the actual compensation procedure, the
polarizers are aligned orthogonal to each other and the interference fringes are tuned to a
minimum with the Polarization Controller. Polarization compensation has to be performed
for both the H/V- and +/- -Basis (i.e. polarizers at 0◦/90◦ and 45◦/-45◦). Successful
compensation in one basis does not automatically imply that the qubits (photons) are
indistinguishable, since any point on the Poincaré-Sphere9 is defined by two angles θ and
ϕ, as has already been discussed in Section 1.1.2. The compensation in the +/- -Basis
is performed independently from the H/V-Basis by rotating a HWP in front of a QWP
oriented at 45◦, again in a way that the interference fringes are minimized.

7We use in-line PolaRITE-controllers manufactured by General Photonics.
8The Phase Modulator is a piezo-actuator that periodically (70 Hz) squeezes the optical fiber, inducing
and varying the phase of the interferometer.

9One might think of this polarization compensation procedure as trying to match the respective Poincaré-
Spheres of the qubits such that they become indistinguishable.
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Figure 9.1.: Simplified scheme of the polarization compensation setup. The whole part left of
the polarizers in a) can be removed from the actual setup since it serves for the compensation
procedure only. The additional fiber BS realizes a Mach-Zehnder interferometer and the phase
modulator allows the observation of interference fringes in one output detector. b) shows a
typical fringe pattern of the procedure. The upper two lines give the actual countrates at the
output-detectors while the lower line indicates the difference of these countrates. In the right
part of the screen the interference fringes were optimized to a minimum using the polarization
controller and crossed polarizers in front of the beamsplitter.

Eventually, the photons propagate to the more complete Bell-state analyzer (denoted Alice
in Fig. 9.2), which consists of the (aforementioned) fiber beamsplitter and additional
PBSs in the respective output modes. After the fiber beamsplitter, polarization drifts
have to be compensated again to ensure that the photons are properly impinging on the
Wollaston-PBS, which are of very high quality. These additional PBSs enable the further
discrimination of the |Ψ+〉 state, depending on proper coincidence detection, as has been
described in the previous section (see Fig. 8.2).

74



9.4. Detection and Coincidence Logic

9.4. Detection and Coincidence Logic

Silicon Avalanche Photo Diodes, or Si-APD for short, are most suitable for the detection
of single photons at our selected wavelength of 789 nm because of their high quantum
efficiency in this regime. When operated at -25 to -40◦C, they achieve a typically overall
detection efficiency of 40%. The Si-APD very much resemble the detectors used in the
CSIGN-gate experiment, but the single photon counting modules (SPCM) have been in-
corporated in self designed detector systems [60], which feature active quenching of the
avalanche in the APD as well as air cooling in addition to the Peltier-cooling of the actual
photo diode. The detector electronics of this APD directly deliver a 150 ns wide TTL pulse
of 2.5 Volts height in a 50Ω load. The detectors are fiber-coupled, have a dead time of
about 200 ns and a quite low dark count rate of 200-500 cps.
In our experiment, the successful teleportation of a photon is indicated by, and con-
ditioned on, a 4-fold coincidence measurement (participating photons 1-3 plus trigger),
where the detectors at Alice determine the outcome of the Bell-state measurement as has
been described in Section 8.2.2 and is illustrated in Fig. 8.2. For this task, a programable
coincidence logic has been designed by T. Jennewein [60], which is capable of detecting
all possible coincidence patterns depending on the VHDL10 code written on the main
logic chip (Xilinx CPLD11 chip). The coincidence logic was realized as a very general and
open hardware implementation of the CPLD in order to allow its use in several different
experiments [60]. It has eight input BNC-connectors for detector signals, eight outputs
delivering the desired coincidence pulses, two static selector signal inputs12, and a clock
signal input to synchronize the logic with the laser pulses.
Finally, the obtained coincidence signals are processed and counted by external counting
cards and fed into a personal computer, where the measurement routines are realized as
various LabView programs.

10VHDL = very high density hardware description language
11CPLD = configurable programmable logic device
12The Selector allows to switch between different coincidence patterns, i.e. 4-folds, 2-folds and singles.
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Figure 9.2.: Schematic drawing of the teleportation setup, which can be divided in three distinct
parts. a) indicates the system that is pumping the PDC-crystal and includes the laser(s) and up-
conversion process. b) represents the entanglement source, while boxes c) and d) display the
communicating parties Alice and Bob, respectively. Photons 1 and 2 constitute the entangled
pair that Alice and Bob share, while photon 3 indicates the particle to be teleported (photon 4 is
the trigger). An more detailed description can be found in the respective sections.
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In this chapter I will explain the main realization of the presented experiment to study
the effects of temporal mode-mismatch on the performance (i.e. fidelity) of a quantum
teleportation experiment. We will accomplish this by deliberately moving the delay mir-
ror during the teleportation, so that the overlap of the photon wavepackets at the relevant
beamsplitter is non-ideal. This procedure also simulates fluctuations in fiber length, e.g.
due to thermal expansion, as will occur in a real-world environment if these kind of config-
urations are about to be implemented in long-distance quantum communication schemes.
Since we have already discussed the theoretical background of quantum teleportation and
given a short outline of the experimental setup in the previous section, we can now focus
on the experimental procedure. At the end of this chapter I will present the results and
discuss their relevance.

10.1. Experimental Procedure

10.1.1. Optimizing the Entanglement Source

To be able to carry out the experiment in a reasonable way, we need an entangled photon
source of high quality. While tweaking up the output power of the laser (without chang-
ing the wavelength) is a rather straight-forward task, obtaining good conversion- and
collection-efficiencies of the parametric down-conversion as well as a high “entanglement
visibility” is not. We are employing type-II SPDC [25] as already discussed in Section 2.1,
so that we effectively create an entangled |Ψ−〉 state in the forward and backward di-
rections (i.e. modes 1/2 and 3/4, respectively) of the setup (Fig. 9.2). Walking the fiber
couplers in the same manner as described in Section 4.1, we obtained coincidence rates as
high as 12000 cps in the forward direction and 9000 cps in the backward direction, where

Polarizer Forward Backward
Setting [◦] Pair [CC/s]

Contrast
Pair [CC/s]

Contrast

0/90 12000 9000
0/0 60

200/1
60

150/1

45/-45 7000 6000
45/45 200

35/1
200

30/1

Table 10.1.: Coincidence count rates per second ([CC/s]) of the forward and backward pair for
various polarizer settings. The contrast gives a good estimate of the entanglement quality.
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Figure 10.1.: Left: Scheme for equalizing the effective optical path lengths of photons 2 and 3.
Right: Picture of the delay mirror mount. An additional prism is placed on the mount such that
it back-reflects one of the forward DC-beams into mode 3. This way the correlated photons can
be used to search for the optimal delay-mirror position where the path lengths of modes 2 and 3
become equal. This procedure is also known as HOM-Dip search and is further explained in the
text.

those counts were measured in the H/V-Basis, i.e. with additional analyzing polarizers
placed orthogonal to each other at 0/90◦ in front of the fiber couplers. These countrates
decreased to values of 60 cps with parallel polarizers in front of the fiber couplers.
To obtain genuine entangled states, it is also necessary to achieve a good contrast in an
orthogonal basis, such as the +/- -Basis. By constantly checking those two visibilities and
subsequently walking the fiber couplers, we were able to obtain fairly good contrasts, as
can be seen in Table 10.1. It is important to note that the contrast in the complementary
+/- -Basis is always reduced due to the non-zero spectral width of the pump pulse1, which
leads to down-conversion photons of non-degenerate wavelength, as has been pointed out
in Ref. [61, 62]. Calculations have shown that the optimum visibility in the complementary
basis for our laser is approximately 97%.

1This is due to the fact that the walk-off between the pump pulse and the down-conversion photons is
never corrected for, which leads to a distinguishability of the pairs dependent on their production location
in the crystal, which in turn reduces the interference and contrast between these different pairs.
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10.1.2. HOM-Dip

In order to perform a successful Bell-state measurement, photons 2 and 3 have to be in
the same spatial, spectral, polarization and temporal modes. Indistinguishability in the
spectral and spatial mode is ensured by using fiber beam splitters and narrow (3.2 nm)
interference filters (IF) in front of the detectors. To equalize the polarization of the
photons before the BS, a polarization controller was employed, allowing for arbitrary
polarization rotation of the qubit as has been explained in Section 9.3.1. Ultrashort laser
pulses (150 fs) and narrow filtering stretch the coherence length of the photons to well
above 300µm, effectively longer than the pump pulse duration [63]. Since we have to
“erase” the identity of photons produced from independent DC-processes, this ensures
indistinguishability of the respective creation times of the photons. In order to give rise
to quantum interference at the BSA (i.e. the fiber beamsplitter), the two photons have
to arrive simultaneously at the BS, i.e. well within their coherence time. By sufficiently
delaying the pump pulse after the first passage through the non-linear crystal one can
equalize the effective path lengths of photons 2 and 3 before they are superimposed on the
fiber beamsplitter. In the actual teleportation experiment, these two photons originate
from different and independent down-conversion processes. Unfortunately the event of a
pump pulse generating two photon pairs, a so-called 4-fold-event, is rather unlikely (in the
order of 1Hz) so that the count rates remain too low for a straightforward teleportation
scan. One has to previously narrow down on the region of perfect temporal overlap. This
is done by blocking the pump laser shortly after it traverses the BBO-crystal, so that
correlated photon pairs are only emitted in the forward direction (see Fig. 10.1). A prism
mirror is then placed in the path of DC-photon 1, approximately at the height of the
delay-mirror such that the down-converted light is back-reflected into mode 3 where it is
fiber-coupled and directed to the fiber beamsplitter. Employing this method we achieve
coincidence rates of up to 3500 cps, sufficient to perform a HOM-type experiment by
slowly translating the delay mirror mount and simultaneously recording the coincidence
rate between both outputs of the beamsplitter [29], as has been done in similar manner
in Section 4.1.3. It is important to note at this point that we do not fiber-couple an
entangled photon pair because of the polarizers2.

The result of this preliminary scan can be seen in Fig. 10.2, where the Gaussian
dip in coincidence rates at the output of the fiber beamsplitter clearly yields the ideal
delay mirror position where the temporal mode match of the input photons is almost
perfect. We observe a dip visibility3 of approximately 56%. The full width-half maximum
(FWHM) of the dip corresponds to the coherence length of the photons, in our case
approximately 340µm (twice the FWHM indicated in Fig. 10.2, since a mirror translation
of x results in a actual path delay of 2 x). This preliminary HOM scan provides us with
a good estimation of the region of teleportation. The imperfect dip visibility is probably
due to non-ideal polarization compensation but not of further interest since we are just
aiming for the ideal delay mirror position.

2An entangled |Ψ−〉 state would not yield HOM dip, but rather a “HOM peak”!
3The visibility or “depth” of the dip is governed by the degree of indistinguishability between the photons
and is therefore a good measure for the quality of the non-classical interference as outlined in Section 4.1.3.
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Figure 10.2.: Graphical plot of the HOM-Dip-Search. The significant dip in coincidence count
rates indicates the position of ideal temporal overlap of the input photons at the beamsplitter.
The dip is of Gaussian shape as indicated by the fit and yields a visibility of 56± 3%.

10.2. Results

Theoretically, successful teleportation is indicated by a dip in threefold-coincidences, e.g.
if we intend to teleport a |+〉 state, then the three-folds rate between the corresponding
|Ψ−〉 Bell-state detectors and the |−〉 analysis detector at Bob should decrease to zero,
while the three-folds including the |+〉 analyzer remain constant when scanning over the
region where the photons overlap coherently [52]. In the actual experiment, to eliminate
the background of spurious counts, we also incorporate the trigger (photon 1) into our
coincidence measurements. Furthermore, since we do not only detect the |Ψ−〉, but also
the |Ψ+〉 state, we expect to observe a “peak” in coincidence rates for the |+〉 as well
as for the appropriate |−〉 analyzer-three-folds. This is because outside the region of
coherent photon overlap, the chance to observe one particular Bell-state decreases to 1/8,
compared to 1/4 for ideal temporal overlap, resulting in the aforementioned relative peak
of coincidence counts.

This can be seen in Fig. 10.3, where the coincidence rates are plotted as a func-
tion of the delay mirror position. We observe a visibility of 73± 4% and 79± 3% for the
|Ψ−〉 and |Ψ+〉 state, respectively. In the region of the dip, the temporal delay between
the arrival of photon 2 and 3 at Alice’s beamsplitter vanishes, resulting in quantum
teleportation. To prove this for an arbitrary qubit, one has to demonstrate this for at
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Figure 10.3.: Experimental teleportation with a more complete Bell-state analyzer. The coin-
cidence rates are plotted as function of the delay mirror position. We observe a Gaussian-fit
visibility of 73± 4% and 79± 3% for the |Ψ−〉 and |Ψ+〉 state, respectively, which corresponds
to a respective fidelity of 86± 4% and 90± 3%.

least two non-orthogonal states. Since we, however, are only interested in the impact of
the temporal mode-mismatch on the teleportation fidelity, teleportation of other states
has not been performed.
The fidelity F of the teleportation, which characterizes the overlap between the initial,

to be teleported state, and the final, teleported state, is naturally affected by the
(non-ideal) quality of the mode-match at the essential fiber-beamsplitter. By determining
the visibility V of a full teleportation scan as shown in Fig. 10.3, we can easily compute
the teleportation fidelity F via the following relation,

F =
1 + V

2
. (10.1)

It has already been mentioned in the introductory part of Section 8.1, that variations4

in the length of optical fibers can easily lead to imperfect temporal mode matching

4e.g. due to temperature fluctuations, earth movements, etc.
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Figure 10.4.: Graphical representation of the delay mirror positions during a scrambling ex-
periment, where the time scale is in arbitrary units. Obviously, the positions are rectangular and
stochastically distributed over the full scrambling amplitude, which, in this particular case, was
450µm. This plot indicates proper performance of the Random Number Generator.

conditions in quantum communication schemes, especially if the fibers are of several
km length. To study effects of this sort in the laboratory, we chose to deliberately and
randomly change the position of the delay mirror, delaying the arrival time of photon
3 which effectively simulates this temporal mismatch of the photons. Employing a
LabView Random Number Generator to draw mirror positions uniformly from a preset
(maximum) scrambling amplitude (see Fig. 10.4), we continuously translated the delay
mirror during each measurement interval while performing a full teleportation scan.
Repeating this procedure and increasing the maximum scrambling amplitude between
each full scan, we were able to obtain plots as shown in Fig. 10.5, where the fidelity
is plotted as a function of the maximum delay mirror movement (or scrambling) amplitude.

Fig. 10.5 shows the outcome of short and long range experiments, where the scrambling
amplitude a has been chosen to vary in between 0 and 0.7mm (left figure) and between 0
and 1.3mm (right figure). The scrambling frequency was slightly above 1Hz, which is the
average expected 4-fold coincidence rate for our setup. To account for long-term power
and alignment drifts of the pump laser, the 4-fold count rates have been divided by the
according coincidence count rates of the more complete BSA. Furthermore, since we are
only interested in the relationship between temporal mismatch and decrease in fidelity
and actually do not care about the absolute values, the fidelity has been normalized to
avoid possible misunderstandings.
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Figure 10.5.: The figures above show our experimental results plotting the teleportation fidelity
as a function of the amplitude of the random delay mirror movement, in absolute values (mm)
and also in units of the photon’s coherence length (340/2=170µm). The solid lines are fits
developed from a theoretical model (see Section 10.3.1). Both, the short (left figure) and the long
range (right figure) experiment show a very strong consistency with this model. Error bars have
been calculated by Poissonian count statistics.

10.3. Discussion

The collected data of all experiments shows a characteristic Gaussian decrease in fidelity
with increasing scrambling amplitude. But it is very interesting and well worth noting
that mirror oscillations of up to 170 µm amplitude still result in visibilities of roughly 2

3
,

the quantum-classical threshold in teleportation [64]. This is equal to a temporal mode-
mismatch of exactly the coherence length λc=340µm of the photon (roughly 1.1 ps), which
is proof of the fact that the participating photons have to overlap ONLY within their co-
herence length to give rise to quantum interference effects5. It also very dramatically shows
that “phase coherence” between the photons originating from different PDC-events is not
required for successful teleportation. This phase coherence is mandatory if one thinks of
successful teleportation as just some Mach-Zehnder-type interference effect, where the
interferometer is realized by the PDC-crystal and the BSA-beamsplitter. Since we fre-
quently and randomly translate the delay mirror by well more than 500 λ in the course
of a measurement, we successfully disprove this argument.
It further has to be stated at this point that we employed two different types of delay-
mirror-movements. One set of data was taken while continuously moving the mirror from
one random position to the other, which also served the purpose to investigate the effects
of temporal mismatch and to simulate temperature-induced fiber length fluctuations. Fol-

5This is also known as fourth-order interference, where it is said that each two-photon state interferes
with itself, contrary to second-order interference, as realized in a typical Mach-Zehnder-interferometer,
where it is said that each photon interferes with itself. Second-order interference therefore exhibits phase
sensitivity, while in general, fourth-order interference does not [29].
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lowing another approach and employing the highest motor velocity, we translated the
mirror continuously in between the maximum scrambling positions. Moving the mirror
mount as fast as possible (À 200µm/s), we did not observe, on average, any deviations
of the experimental results shown in Fig. 10.5.
In summary, this results, quite surprisingly, soften the requirements for future ”real-
world”-quantum repeaters or similar long-distance quantum communication schemes.
Since polarization drifts in fibers are negligible over small timescales and can easily com-
pensated for in the long run, these are very promising results for future engineers and pos-
sible commercial applications. The results further imply that temporal mode mis-match in
the CSIGN-gate experiment is probably not to blame for imperfect gate performance, since
relative fiber-length-drifts in this experiment are most likely in the sub-micron regime. If
the criteria of spatial mode matching would be met with special partial polarizing fiber
beamsplitters, gate performances with fidelities well above 99% could, in principle, be
expected [65].

10.3.1. A Simple Theoretical Model

Additionally, in order to get a better theoretical comprehension, we developed a simple
model which describes the Gaussian decrease in fidelity as a function of the temporal
mis-match of the two interfering photons at the beamsplitter.

First of all, we assume the teleportation fidelity F to be a Gaussian function of
the mirror position x with center xc = 0 as indicated by experimental results and shown
in Fig. 10.6.

F (x) = 0.5 +
C

w
√

π/2
exp

(
− x2

2 w2

)
, (10.2)

where C is a constant and w the width of the Gaussian. Since the actual position of the
mirror is not constant during one measurement because of the deliberate random move-
ments, one expects an average fidelity F = A(a)

a
, where a is the range of the fluctuations

and A(a) the integral

A(a) =

a/2∫

−a/2

C

w
√

π/2
exp

(
− x2

2w2

)
dx, (10.3)

which is also indicated in Fig. 10.6. This integral can be solved analytically to

A(a) = 2C · erf
(

a

2
√

2 w

)
, (10.4)

where erf(z) denotes the error function

erf(z) =
2√
π

z∫

0

e−t2dt. (10.5)
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Figure 10.6.: Left figure: The dependence of the teleportation fidelity as a function of the
unscrambled motor position. The fit indicates that the curve can be described by a Gaussian
function with the FWHM (170·2=340µm) indicating the coherence length of the photons, in
perfect agreement with the experimental results. We stress at this point that the width of the
Gaussian was not a fit parameter.
Right figure: Calculating the expected, average teleportation fidelity in our experiment. a denotes
the scrambling amplitude of the delay mirror, simulating the fiber-length-fluctuations.

The error function erf(z) can be used whenever the results of a series of measurements are
described by a normal distribution with standard deviation σ. Then erf(z/(σ

√
2)) is the

probability that the error of a single measurement is in between −z and +z. Eventually,
the expected fidelity F (a) results to

A(a) = 2C ·
erf

(
a

2
√

2w

)

a
. (10.6)

But the parameters C and w describing the origin dependence of the Fidelity F from the
mirror position x are in most cases unknown and F (a) must be fitted to the data set.
To fit this function to a measurement series, one might use the following parametric fit
function

F (a) = P1 · P2 ·erf(P3 · a)

a
. (10.7)

Here the parameter P1 denotes the base level F (a)a→+∞, which in our case is 0.5. The
parameter P2 and P3 depend on the constants C and w respectively, where C corresponds
to the absolute maximum teleportation fidelity and w to the FWHM of the interference
filters.
Collected data of all experiments agrees very well with this model, showing a Gaussian
decrease in fidelity. The Gaussian fit in Fig. 10.5 is in fact not fitted to the data points
but adapted and scaled from the model derived above. This parametric fit function is
very well suited for mode-mismatch estimations in quantum communication schemes. If
the constants C and w, i.e. initial fidelity and IF-filter specifications, are known, one can
infer the sensitivity of the setup/configuration on temporal mode-mismatch.
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11. Conclusion

In this concluding chapter I will briefly summarize the contents of this thesis and give a
short overview of the experimental progress that has been achieved during my research
activities.

I have given a somewhat extensive but self-contained introduction into the theo-
retical aspects regarding Quantum Information, starting with a short outline of quantum
physics and linear optics quantum computation. This follows more detailed and advanced
theory relevant for the experiments, such as phase-matching for parametric down-
conversion and Gaussian beam propagation for the calculation of mode-matching and
optimal fiber-coupling. Furthermore, the action of a simplified CSIGN-gate architecture
for the generation of a 3-photon cluster state has been shown theoretically, while proper
characterization of the gate’s performance in the form of quantum state and quantum
process tomography has also been explained.

In the main part of this thesis I have briefly described the experimental setup in-
cluding the measurement equipment before proceeding to the experimental procedure,
starting with the adjustment of the down-conversion source to generate correlated
photons, to fiber-coupling the down-converted light and aligning and calibrating the
linear optics elements employed in the setup. Last but not least, the quantum state
and process tomography of the simplified CSIGN-gate has been performed, observing an
average gate fidelity of Favg = 0.84± 0.1. I discuss this and other relevant results in detail
and infer that mode-mismatch is primarily responsible for the gate’s imperfect operation.
At this point I want to stress again that the demonstration of this new architecture of
an entangling optical gate is the simplest realization to date. Although unfortunately at
the time being, the extension of the current setup to generate a 3-photon cluster state
is not feasible due to low coincidence count rates, this problem has been addressed and
various different solutions have been discussed. Necessary equipment therefore has been
ordered and I believe that the generation of a 3-photon cluster state can be realized in
the near future. A brief outlook on future experiments and their technical requirements
is also given at this stage.

Since it turns out out that mode-mismatch is the prime limitation on the perfor-
mance of the CSIGN-gate, another experiment has been conducted that studies temporal
mismatch of photons in a quantum teleportation configuration. After a brief introduction
into quantum teleportation and more complete Bell-state analysis, I have described
and explained the experimental setup and procedure. Results are presented and their
relevance to various quantum communication schemes has been discussed. At the end
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11. Conclusion

a simple theoretical model has been developed that fits very well to the experimental
results, explaining the Gaussian decrease in teleportation fidelity with increasing temporal
mode-mismatch of the photons at the essential Bell-state analyzer.
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A. Published Work of this Thesis

The CSIGN-gate tomography, which has been presented in this thesis, was summarized
as a publications and is given on the following pages. It has been recently published in
Physical Review Letters and can also be accessed as an e-print on the ArXiv server:
http://arxiv.org/abs/quant-ph/0506262 .
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Demonstration of a Simple Entangling Optical Gate and Its Use in Bell-State Analysis
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We demonstrate a new architecture for an optical entangling gate that is significantly simpler than
previous realizations, using partially polarizing beam splitters so that only a single optical mode-matching
condition is required. We demonstrate operation of a controlled-Z gate in both continuous-wave and
pulsed regimes of operation, fully characterizing it in each case using quantum process tomography. We
also demonstrate a fully resolving, nondeterministic optical Bell-state analyzer based on this controlled-Z

gate. This new architecture is ideally suited to guided optics implementations of optical gates.

DOI: 10.1103/PhysRevLett.95.210504 PACS numbers: 03.67.Lx, 03.65.Wj, 03.67.Mn, 42.50.Dv

A key resource for using entanglement in quantum
information protocols is gates that are capable of entan-
gling or disentangling qubits [1]. Entangling gates lie at the
heart of quantum computation protocols, for example, and
disentangling gates used in Bell-state analyzers are re-
quired for quantum teleportation. Conceptually, the sim-
plest such two-qubit gate is the controlled-Z (CZ) gate,
which in the logical basis produces a � phase shift on
the j11i term, (i.e., j00i ! j00i; j01i ! j01i; j10i ! j10i;
j11i ! �j11i). This is a maximally entangling gate which,
when coupled with single-qubit rotations, is universal for
quantum computing [2].

In 2001, Knill, Laflamme, and Milburn proposed a
scheme for linear optical quantum computing which used
measurement to nondeterministically realize the optical
nonlinearity required for two-qubit entangling gates [3].
They also showed that deterministic versions of these gates
could be achieved using teleportation [4], which requires
Bell-state measurement. Since then, there have been a
number of demonstrations of quantum logic gates derived
from this concept [5–9] and further theoretical develop-
ment of linear-optics schemes [10–14]. In particular, there
is a recent suggestion to use nondeterministic CZ gates to
construct cluster states for demonstrating optical cluster-
state quantum computation [15].

Here we report an experimental demonstration of a non-
deterministic linear-optics CZ gate and its application as a
Bell-state analyzer. This CZ gate is the simplest entangling
(or disentangling) linear-optics gate realized to date, re-
quiring only three partially polarizing beam splitters
(PPBSs), two half-wave plates, no classical interferome-
ters, and no ancilla photons. It is nondeterministic, and
success is heralded by detection of a single photon in each
of the outputs. We demonstrate the operation of this type of
gate using photons generated both by continuous-wave
(cw) and by femtosecond-pulsed parametric down-
conversion—we find that temporal mode mismatch was
not a significant factor in the gate’s performance. We fully
characterize the operation in both regimes using quantum

process tomography, and we also demonstrate the use of
this kind of gate for fully resolving Bell measurements.
This simple entangling optical gate is promising for micro-
optics or guided optics implementations where extremely
good nonclassical interference is realizable.

The best performing entangling gate implementations to
date have been interferometric: A conceptual schematic of
an interferometric optical CZ gate, composed of three par-
tially reflecting beam splitters with reflectivity � � 1=3, is
shown in Fig. 1(a). Each polarization qubit input to the gate
is split into two longitudinal spatial modes via a polarizing
beam splitter. The horizontally polarized modes meet at a
1=3 beam splitter, and nonclassical interference means
that, for an arbitrary input state, the entire circuit performs

The CZ Gate
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FIG. 1 (color). (a) Interferometric CZ gate based on the ap-
proach of Refs. [13,14]. Gate operation is enabled by trans-
forming each qubit from polarization to spatial encoding and
back again. This requires high interferometric stability and
spatiotemporal mode matching for correct operation. (b) Par-
tially polarizing beam splitter gate. The qubits can remain
polarization encoded, since the vertically polarized modes are
completely reflected by the first PPBS and do not interact.
Nonclassical interference occurs between the horizontally polar-
ized modes, with � � 1=3. The subsequent PPBSs give the
required losses in the cV and tV modes as shown in (a).
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the transformation: �jHHi��jHVi��jVHi��jVVi!
1

3
���jHHi��jHVi��jVHi��jVVi����� , where H

and V refer to horizontal and vertical polarization, respec-
tively, and the terms not shown correspond to the failure
mode of the gate (i.e., the control and target output ports do
not each contain one photon). With probability 1=9, the
circuit performs the CZ operation (using the logic-basis
definitions 0 � V and 1 � H). After the network of 1=3
beam splitters, the two spatial modes of the control and
target must be recombined to return to polarization-
encoded qubits. Since the phase relationship between the
logical modes must be maintained throughout this opera-
tion, interferometric stability is required between the con-
trol and target modes. Inherently stable interferometers
have previously been used [6,7] to achieve this—however,
these may not be suitable for scaling to large numbers in
micro- or integrated-optical realizations. Here we take an
alternative approach which does not require interferomet-
ric stability.

The experimental setup for the CZ gate we have devel-
oped is shown schematically in Fig. 1(b). We use PPBSs
with reflectivities of 1=3 and 1 for horizontally and verti-
cally polarized light, respectively [16]. As in Fig. 1(a), only
the H modes interfere nonclassically at the first PPBS. The
V inputs are then flipped to H by half-wave plates—-
single-qubit X gates—and are attenuated by the remaining
two PPBSs to balance the losses. The circuit of Fig. 1(b)
therefore performs a CZ gate with additional X gates on the
control and target qubits. These X gates could be corrected
with wave plates in the outputs or by relabeling the logical
states of the outputs—here we chose to relabel. The key
advantage of the PPBS gate is that the polarization modes
are never spatially separated and recombined, and, conse-
quently, no classical interference conditions are required.
A single nonclassical interference at the first PPBS is,
therefore, the gate’s sole mode-matching condition.

To test multiqubit circuits, multiphoton sources are re-
quired. The current gold standard for generating two or
more photons is pulsed parametric down-conversion:
Pump power densities far greater than those possible with
cw sources lead to significantly higher probabilities of
multiphoton events. Down-converted photons from short
pump pulses can display more complex interference effects
with reduced visibility. Thus, any new gate architecture
should be shown to be compatible with both cw and pulsed
sources. We tested the PPBS architecture with both cw and

femtosecond-pulsed sources, which produce pairs of en-
ergy degenerate single photons via spontaneous parametric
down-conversion in a �-barium-borate crystal (Table I).
The photon pairs were collected into single mode optical
fibers to improve the spatial mode and injected into the CZ

gate [Fig. 1(b)]. In the pulsed case, mode-matching was
also improved by collecting the gate output into single
mode fibers. A pair of half- and quarter-wave plates at
the output of each fiber was used for input state prepara-
tion. A coincidence window of �5 ns was used, and no
correction for accidental counts was made. The gates were
completely characterized via quantum process tomography
[7,18].

A convenient representation of the measured process is
the �matrix, which is a complete and unique description of
the process relative to a given basis of operators. The �
matrix for ideal CZ gate operation in the Pauli basis is
shown in Fig. 2(a) (all the components are real). The ex-
perimental results for the cw gate are shown in Fig. 2(b),
those for the pulsed gate in Fig. 2(c). By using the method
of Ref. [7], we are guaranteed physical � matrices requir-
ing no extra normalization. In the cw case, the II term is
0.36 instead of the expected 0.25 due to imperfect non-
classical interference resulting from mode mismatch.

Gate performances can be quantified by calculating the
process fidelity FP � Tr��meas�ideal� or the average gate
fidelity, which is the fidelity between expected and actual
output states, averaged over all pure inputs, F � 	4FP �
1
=5 [7,19]. The cw and pulsed gates have process fidelities
of 74:6� 0:3% and 84:0� 0:1%, respectively, and aver-
age gate fidelities of 79:7� 0:2% and 87:2� 0:1%, re-
spectively [20]. Despite more stringent temporal mode-
matching requirements in the pulsed regime, the extra
spatial filtering led to better gate operation, equivalent to
the previous best demonstration [7].

In our experiment, we observed systematic, fixed polar-
ization rotations, probably due to birefringent effects in
nonideal PPBSs. In practice, these have no effect on gate
quality and, if necessary, could be compensated for with
appropriate wave plates. To demonstrate this, we modeled
their effect numerically, identifying single-qubit unitary
corrections which increased the cw and pulsed process
fidelities to 77:0� 0:3% and 86:6� 0:2%, respectively,
and average gate fidelities to 81:6� 0:2% and 89:3�
0:1%, respectively.

A potential drawback of the PPBS architecture is that the
beam splitting ratios are fixed at manufacture—in contrast
to schemes where the setting of a half-wave plate deter-
mines the effective beam splitter reflectivity [6,7]. While
the PPBSs for the cw gate (optimized for 702.2 nm) were
measured to be within �0:01 of the required reflectivi-
ties, for the pulsed gate (820 nm), the values for the three
PPBSs were � � 0:28, 0.28, and 0.29 (�0:01; normalized
to output power). Modeling a gate using 0.28 reflectivi-
ties, we find the optimum process fidelity that can be ob-
tained is F0:28

P � 96%—near ideal. As originally shown in

TABLE I. Photon source parameters.

Parameter cw Pulsed

Pump source Ar
� Doubled Ti:Sa

Pump wavelength 351.1 nm 410 nm

Crystal arrangement Type I sandwich [17] Type I single

Photon wavelength 702.2 nm 820 nm

Interference filters �0:18 nm �1:5 nm

Output state Separable $ entangled Separable
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Ref. [13], the CZ gate is relatively forgiving of the exact
splitting ratios, making it an eminently suitable gate to be
realized with a PPBS architecture. Performance of the
PPBS gates is limited almost exclusively by mode match-
ing, primarily spatial, making these gates promising can-
didates for micro- or integrated-optical implementations,
where nonclassical mode matching in excess of 99% can
be expected [21].

We further test the CZ gate by operating it as a Bell-state
analyzer of the entangled continuous-wave input states
[17]. Because of the geometry of the source, and birefrin-
gence and geometric effects in the single mode fibers, the
near-maximally entangled state produced is of the form
jHHi � ei’jVVi. We use quantum state tomography

[22,23] to characterize the source state [Fig. 3(a)]. The
tangle T � 0:93� 0:01 and linear entropy SL � 0:05�
0:01 show that this state is highly entangled and highly
pure; the fidelity with a maximally entangled state is F �
98:0� 0:4%. We determine that ’ � �2:094 radians,
and, by using the input wave plates [Fig. 1(b)] to perform
appropriate single-qubit unitaries on each qubit, we can
transform the state of Fig. 3(a) to any desired maximally
entangled state of linear polarization. In Fig. 3(b), we have
produced the state jHHi � jVVi with fidelity F�� �

96:1� 0:2%; T � 0:96� 0:01 and SL � 0:02� 0:01.
To quantify the performance of the CZ gate as a Bell-

state analyzer, we produced the four maximally entangled
states: j 0�i � jHAi � jVDi; j�0�i � jHDi � jVAi,

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.5

0
0.5

1

-0.5

0
0.5

1

-0.5

0
0.5

1

-0.5

0
0.5

1

(d) (g)(f)(e)

I H (H H)U

0

0.5

1

(c)

Re(ρ) Im(ρ)Re(ρ)Im(ρ)

(a) (b)

-0.5

0

0.5

HH

VV

VH

HV

H
H

V
VV
HH
V H
H

V
VV
HH
V

HH

VV

VH

HV-0.5

0

0.5

H
H

V
VV
HH
V

HH

VV

VH

HV

H
H

V
VV
HH
V

HH

VV

VH

HV

FIG. 3 (color). The CZ gate operating
as a Bell-state analyzer. (a) The two-
qubit entangled state at the output of
the fibers and (b) transformed to the
�� Bell state. (c) The measured truth
table: The average probability of success
is 0:78� 0:03. (d)–(g) Transformation
of near-maximally entangled states to
near-separable states by a CZ gate Bell-
state analyzer. (d) The input Bell states
determined from (e) the measured input
states with the second qubit rotated by a
Hadamard. (f) The measured output
states, (g) transformed by applying local
rotations to each qubit (see text).

II IX IY IZ XI XXXYXZYI YXYYYZZI ZXZYZZ

II
IX

IY
IZ

XI
XX

XY
XZ

YI
YX

YY
YZ

ZI
ZX

ZY
ZZ

-0.2

-0.1

0

0.1

0.2

0.3

(a)

II IX IY IZ XI XXXYXZYI YXYYYZZI ZXZYZZ

II
IX

IY
IZ

XI
XX

XY
XZ

YI
YX

YY
YZ

ZI
ZX

ZY
ZZ

-0.2

-0.1

0

0.1

0.2

0.3

(b)

II IX IY IZ XI XXXYXZYI YXYYYZZI ZXZYZZ

II
IX

IY
IZ

XI
XX

XY
XZ

YI
YX

YY
YZ

ZI
ZX

ZY
ZZ

-0.2

-0.1

0

0.1

0.2

0.3

(c)

FIG. 2 (color). Quantum process tomography of the CZ gate. Real components of the � matrix for the: (a) ideal, (b) cw, and
(c) pulsed CZ gates. The imaginary components of the experimental matrices are not shown: A few elements are on the order of 0.05;
the average is �0:005.

PRL 95, 210504 (2005)
P H Y S I C A L R E V I E W L E T T E R S week ending

18 NOVEMBER 2005

210504-3

92



where D � 	jHi � jVi
=
���

2
p

and A � 	jHi � jVi
=
���

2
p

.
These are just the usual four Bell states, with the second
qubit rotated by a Hadamard so that they can be discrimi-
nated by the CZ gate. The four experimentally produced
density matrices are shown in Fig. 3(e): The average of
their fidelities is F � 95:8� 0:7%; the average of the

tangles and linear entropies are T � 0:94� 0:02 and SL �
0:04� 0:01, respectively. For ease of visualization, we
have numerically rotated these states into the more familiar
form by applying a Hadamard gate to the second qubit
[Fig. 3(d)].

An ideal CZ gate would take the four maximally en-
tangled states j 0�i, j�0�i to the four separable orthogonal
states: jDDi, jADi, jDAi, and jAAi, respectively. For the
four input states in Fig. 3(e), the measured output density
matrices are shown in Fig. 3(f). In fact, they are close to the
four orthogonal separable states 	jHi � ei’1 jVi
 � 	jHi �
ei’2 jVi
, where ’1 � �3:07 and ’2 � 0:32 as determined
by a best fit. For ease of visualization, we have rotated
these states into the logical basis in Fig. 3(g). The average
of the fidelities between all combinations of the measured
output states is 24� 5% (ideally zero), demonstrating that
the states are close to orthogonal. Their average tangle T �

0:04� 0:05 and linear entropy SL � 0:42� 0:07 indicate
that they are unentangled, albeit somewhat mixed. This
circuit is working quite well as a Bell-state analyzer.

The average fidelity of the measured output states with
the above separable states is F � 79� 3%: If we analyzed
the output of the circuit in this rotated basis, we would
correctly identify the Bell state with a probability of 79%.
More directly, we can measure each of the separable states
for each Bell-state input by explicitly analyzing in the ro-
tated basis, which gives the directly measured truth table
for the CZ gate when operated as a Bell-state analyzer. The
results are shown in Fig. 3(c), and the average probability
of success is 78� 3%, in agreement with the tomography
results.

It is interesting to note that, whenever a postselected
event occurs, the Bell measurement has effectively discri-
minated one of four input wave plate settings applied to a
single input qubit. That is to say, 2 bits of classical infor-
mation (representing the four wave plate settings) have
been encoded into a single qubit. This is reminiscent of
quantum dense coding [24–26], although, because the Bell
measurement is nondeterministic, a protocol using this
gate would be less efficient than ordinary classical com-
munication. Nevertheless, this still demonstrates the power
of entanglement for dense coding given a deterministic
Bell analyzer, such as can be constructed, in principle,
using measurement-induced nonlinearity.

In summary, we have proposed and demonstrated a new
architecture for entangling optical gates. The key advan-
tage of this new gate architecture is its simplicity and
suitability for scaling—it requires only one nonclassical
mode-matching condition and no classical interferometers.
This is very promising for micro-optic and integrated-optic

realizations of this gate, where extremely good mode
matching can be expected. Finally, we have demonstrated
the operation of this gate as a Bell-state analyzer which has
the advantage of higher success probability and no ancilla
compared to alternative recent demonstrations [9,27].

This work was supported by the Australian Research
Council (ARC), the Queensland Government, and the U.S.
Advanced Research and Development Agency (ARDA).
R. P. acknowledges support from the Austrian Science
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